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Kinetic models of ion transport through a nanopore
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Kinetic equations for the stationary state distribution function of ions moving through narrow pores are
solved for a number of 1D models of single ion transport. lons move through pores of lengtider the
action of a constant external field and of a concentration gradient. The interaction of single ions with the
confining pore surface and with water molecules inside the pore are modeled by a Fokker-Planck term in the
kinetic equation, or by uncorrelated collisions with thermalizing centers distributed along the pore. The tem-
porary binding of ions to polar residues lining the pore is modeled by stopping traps or energy barriers.
Analytic expressions for the stationary ion current through the pore are derived for several versions of the
model, as functions of key physical parameters. In all cases, saturation of the current at high fields is predicted.
Such simple models, for which results are analytic, may prove useful in the study of the current/voltage
relations of ion channels through membranes.
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[. INTRODUCTION ionic current and the electric field applied across the mem-
) o ) brane(current-voltage relationsas well as the conductivity
The flow of fluids through porous media is a classic prob-of the channels as a function of the ionic concentration dif-
lem that has many scientific and industrial applications. Foference, at fixed applied voltageonductance-concentration
very narrow pores, with diameters of the order of 1 nm orrelationg. One of the challenges for theoreticians is to relate
less, continuum descriptions become inapplicable and ththese functional characteristics to the geometric, physical,
transport of matter must be examined on the molecular scaland chemical structure of the pores, which are becoming
Examples include molecular or ionic permeation of zeolitesncreasingly well knowrj13]. This goal may be achieved by
[1], of carbon nanotubg®-4] and of aquaporings] and ion  detailed simulations of the motion of ions and molecules
channels[6] through cell membranes. The simple kinetic through specific pore$14,15, or using simplified models
models examined in this work are meant to crudely represeril6—19. Rates of ion transport can be predicted directly, or
ion channels; they are, however, also more widely app“by application of barrler—cross_mg theories, _such as Kramers
cable. For example, we shall present results for ions flowingate theoryf20-23. An alternative approach is the extension
through an infinitely long pore that might represent a carborP continuum theories to the nanoscale. Goldnjag| and
nanotube or part of a zeolite. Hodgkin _and Kat424] (GHK), in their classic W_ork_, applied
lon channels are pores in cell membranes, through Whicwe 1D diffusion equation in a constant electric field to pre-

ions are transported under the influence of a concentratio ict curlrené—voltage r.(-;lationj for :93. channels.l This V\;lork isl
. o - generalized to specific and multidimensional ion channe
gradient and a large electric field. The permeability of themoolels in the Poisson-Nernst-PlandRNP) theory of ion

pores is highly selective _for particular ions and the pores Ca'ahannels{25,2q, where numerical solution methods are used
aIS(3 open apd close to ion transp(atphenomenon .km_)wn to obtain the current due to diffusion in the presence of com-
as gatlng’) In response to factors such as ligand blmdlng OMylicated and self-consistent potential fields.

changes in the electric field or the membrane tension. Man In this paper, we explore the possibility of applying

channels contain a narrow region, the “selectivity filter,” g\ 10 “anaiytically solvable, kinetic models to the problem
where ionic motion is essentially single fi[§-10. Some ¢ yanghort in nanopores. Our approach is, for the moment,
channels appear to transport iny one lon at a time, V.Vh'l‘%/ery general. We consider the motion of single ions through
others use transport mechanisms involving mu]tlp!e_ 0N 1D pore of length. connecting two reservoirs at different
[8.9,11,12 Measurements'of the current 'through individual ion concentrations, under the action of a constant electric
channels have been possible for some time, and these hayg,y ye shall also consider the case of an infinitely long

result_eq in a large amount of data,_both on t_he gating Char'ore). The effect of the reservoirs is included via boundary
acteristics of channr-__\ls gnd on their properties in the opeflygitions at the pore ends, which impose the velocity dis-
state. These properties include the relationship between tk{ﬁbution of the incoming iongin the case of Langevin fric-
tion only the total incoming flux is imposgdn this simpli-
fied model, the detailed behavior of the ions at the pore ends
*Present address: FOM-Institute for Atomic and Molecular Physis not considered: a more complete description would of
ics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands. Eleccourse include a 3D representation of the reseniaiowing
tronic address: R.Allen@amolf.nl boundary conditions to be set far from the potda a more
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complete picture, the electric field would also be determined | L |
self-consistently, including the change in dielectric environ- ®
ment experienced by the ions on entering the pore. However,
our purpose here is to present a simple model that can be @
solved analytically. Returning to our model, ions are ex-
pected to experience friction due to collisions with the inside § - . .
surface of the pore and with other particles, such as water ! L1 L . @
molecules, inside the pore. We include this effect initially by
a Langevin-like friction within the framework of a Fokker- o
Planck (FP) description, although we shall see that the FP
approach presents some difficulties in the confined geometry
of the finite length pore, which we shall attempt to overcome -
by using an alternative description of the friction in terms of A=
localized “thermalizing centers.” We also consider that there
may be more specific binding interactions between the ion
and the pore surface, for example, with polar residues linin . o o )
the surface. These are modeled by “stopping traps’—on erf€ Probability of finding n traps within the interval
countering such a trap, an ion is stopped and later released o =X =2 IS given by the Poisson distribution with param-
continue its motion under the influence of friction and the€terfi2p(x)dx.
electric field. The action of the stopping traps on the ion may If an ion encounters a trap, its velocity is set to zero,
or may not depend upon its velocity. In all cases, we attemp@enerally irrespective of its initial velocityalthough we
to find general analytic solutions for the stationary state ioni¢hall also consider in Sec. Ill the case of traps which dis-
currentj, and sometimes also for the ion distribution func-criminate between ions according to velogitynside the
tion f(x,v) [defined so that the average number of ions bepore, the ion(of chargeq and massm) is subjected to a
tween positionx and x+dx with velocity betweerv andv uniform electric fieldg, and hence undergoes an acceleration
+dv is f(x,v)dxdv]. These solutions are functions of the ap- toward the righta=qE/m. After being stopped by a trap, the
plied field, as well as of parameters, such as the channdpn is therefore reaccelerated by the electric field. lons also
length, friction coefficient, and probability density of stop- €xperience friction: this will initially be modeled by a force
ping traps. We hope that these results may ultimately be usedyv, Whereu is the velocity of the ion, as well as the ther-
to analyze the transport behavior of specific pores or charlalizing effect of a random force, although an alternative to
nels, by adapting the above physical parameters to thiis Langevin-like model will be presented in Sec. VI. In
known structure of the pore under consideration. summary, the ion undergoes a constant acceleration due to
The general kinetic equation for the model is presented ihe electric field, is slowed down by collisions with mol-
Sec. II. The kinetic equation is solved in Sec. Il for the casefcules inside the pore or on the pore surfdbese processes
of a finite-length channel with stopping traps but without P€ing described by a friction procgsand may be captured
friction, and in Sec. IV for the case of a finite channel with PY traps along the channel to account for temporary binding
friction, but without traps; difficulties arising from the use of t0 polar residues on the pore surface. We shall present results
the FP operator in a pore of finite length are discussed. Thed@r Stationary-state ion flow only. . _
difficulties do not arise in the case of an infinite — o) ~ The general kinetic equation for the stationary-state ion
channel, for which a general solution is obtained in the presdistribution function f(x,v), in the presence of Poisson-
ence of both friction and traps, in Sec. V. Returning to adistributed stopping traps of average dengity) as well as a
finite-length channel in Sec. VI, the FP friction is replaced byLangevin-like friction mechanism, with friction coefficient
a distribution of thermalizing centers throughout the pore,?: IS

. .:o.

FIG. 1. Schematic view of the model channel.

and an explicit expression for the current is obtained in the J J
presence of such thermalizing centers and stopping traps. <U—+a—)f(x,v)
Concluding remarks are made in the last section. X
Il. MODEL AND KINETIC EQUATION :p(x){‘s(v)j dwiw[f(x,w) - |v|f(x’v)}
Our model channel is pictured in Fig. 1. The channel of 9 keT 0
length L is located along thex axis (-L/2<x<L/2). The LR L f(x,v). 1)

radius of the pore(which is assumed to be cylindrigal

matches the ion radius, so that ionic motion inside the pore i¥he left-hand side ofl) describes free flow of ions under the
strictly 1D. The pore links two reservoirs containing ionic action of the constant acceleratiararising from the external
solutions of linear concentrations (to the lef) andp, (to  field. The right-hand side contains two collision terms. The
the righd: p, andp, are related to the bulk concentratiogys first accounts for the stopping traps: it is a balance between
andc, in the reservoirs by, = 7R, |, whereR is the radius  gain(in the population of zero velocity particleand losgof

of the pore. The inner surface of the pore is lined with stop-particles with velocity). The second term is the FP operator
ping traps of local average densjigx): we shall assume that acting on the distribution function: it accounts for the effect
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of the frictional and random forces. Note that the kineticcal densityp(x) and are distributed according to a Poisson

equation(1) is for a single ion: it does not account for inter- law as described in Sec. Il: on encountering such a trap, the

actions between several ions within the pore. This limitationvelocity of an ion is reduced to zero. In the absence of fric-

will be addressed in later work. tion, the kinetic equatioiil) for the stationary-state ion dis-
The reservoirs on the leftx<-L/2) and on the right tribution functionf(x,v) simplifies to

(x>L/2) of the channel are assumed to contain ions in ther-

modynamic equilibrium at the same temperatlydut gen- d d
erally at different densitiesp, (to the lefy and p, (to the va—x+a5 f(xv)
right). The ion distribution functions in the reservoigsot i
gw(;:rlgd;r;g’ tr?eené:é)'ntrlbutlon of any ions coming out of the :p(X){5(v)f dvv|w|f(x,w)—|v|f(x,u)}. 9
— T — T
v =pd ) 1) =prd (v), @ Note that we obtain Eq6) (constant current throughout the
where pore on integrating both sides aof9) over all velocities
2 —o<p<+ow, If the traps are on average uniformly distrib-
() =/ m exp[— mo ] (3)  uted[p(x)=p], Eq.(9) can be solved exactly fof(x,v) as
2mkgT 2kgT shown in Appendix A. An expression for the ionic currgnt

is the Maxwell velocity distribution function. can, however, be obtained for apyx) using simple argu-

For illustrative purposes, we first consider the case wher@'€Nts, without the need for an explicit solution figk,v).
acceleration, traps, and friction are all absent, and an ion Ve first note that in the stationary state, the contribution
which enters the pore at one end keeps the same veIociH? the current due to an ion which enters the channel at one
until it reaches the other end. The ion distribution function€nd depends only on its incoming velocity and its probability

within the pore is then simply of eventually arriving at the other end, sinpeloes not de-
pend onx (and there are no interactions between jofR®r
f(x,0) =[p6) + pr6(=v)](v), (4)  this model, all ions entering the channel from the left reser-

where 6 denotes the Heaviside step function. The ion current " atx=-L/2 will eventually reactx=L/2, since on being
stopped by a trap they are reaccelerated by the field toward

is given by the right (assuminga is positive. Thus the contribution of
_ * these ions to the current is
J(X)=J dv vf(x,v). (5)
- o keT
For a stationary state, continuity requires that the current be Ii=p 2mm'’ (10
independent of position:
dj(%) lons entering the channel from the rightatL/2 will reach
Tdx =0. (6) x=-L/2 only if they are not stopped either by the opposing

field or by an encounter with a trap. An ion that is stopped is
Substituting(4) into (5), one finds the result in the absence of 'eaccelerated toward the right, so that it will exit the channel
acceleration, traps, or friction: atL/2. The Poisson probability of encountering no traps be-
tweenx; andx, is

P(x4,X%) = exp{— fo p(x’)dx’}, X1 <Xp. (11)

() = fx dv F(x.0) ) In order to overcome the opposing field, ions must enter the
. ’ channel with kinetic energgw?/2>mal, so that, assuming
a Maxwell distribution of velocities alt /2, the distribution
is in this case given by=(p +p,)/2. Note that discontinui- function f,(x,v) of particles that entered the channelLa®
ties arise im(x) at the pore boundaries=+L/2; this reflects  and that will eventually reachl-/2 is
the fact that the regions close to the pore mouth are not
modeled in detail in this simple theory. 02 L m
In the subsequent sections, analytic solutions of the ki- i (x,v) =p6(- 0)0{5 +a<§ —X) —aL] Pk
netic equation(1) will be derived for the limiting casey ™8

=0 (Sec. ), =0 (Sec. I\, andL Sec. V. m | v? L LL
( ), p()=0 (Sec. IV) —o (Sec. V) ex — M U—+a<——x) P( _,_)

kgT| 2 2 2'2
I1l. FINITE CHANNEL WITH TRAPS

kel
j= zwm(m pr) (7

while the number density inside the channel

(12
Consider a pore of finite length, containing stopping
traps but no friction mechanism. The traps have average Idrom which Eq.(5) leads to a contribution to the current
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, | kT maL f L/2
= - —_— _— ! ! . 1
Jr Pr 2mm exp{ kT U p(X")dx (13

Adding (10) and(13) leads to the result fof:

kT maL f L2
= —_— —_— —_— ! d ! .
j zwm{m Pr eXP{ kT P p(x")dx

(14)

For a uniform distribution of traps, Eq14) reduces to

'—\lﬂ{ - pr €X —L( +@>} (15
1= 2m P~ Pr P kT

in agreement with the full solution derived in Appendix A.
Equation(14) shows that in this model, in the absence of
friction, the current does not depend on the spatial distribu-
tion of the stopping traps, but only on the integral k)
betweenx=-L/2 andx=L/2. Note that Eqs(14) and (15)
were derived foe>0. Whena< 0, the roles of the right and
left reservoirs must be interchanged. .
If the reservoir densitieg; andp, are measured relative to = ) 5 5 y
an arbitrary “reference densityg,, such thatp,=C,p, and a*
p=C,pg, @ dimensionless form of the current is given by

I*= Vzwm/(kBT)J/RO' Thls.l.s plotted in Fig. 2, for the cases tion of the dimensionless acceleratiari= mal/(kgT), where the
where the 'reserVOIr densities are eq@|=C,) or different reservoir densities arg=C,pg and p,=C,pg, for various values of
(C,<C,). Figure 2 shows that the current saturates for larggnhe dimensionless stopping trap denity. Solid lines:pL.=0, dot-
|al. For positivea, the current at saturation is due exclusively ted lines:pL=1, dashed linessL.=2. (a) Equal reservoir densities,
to ions from the left reservoir angr — C;; for negativea, pr=pi; C,=1, C=1. (b) p,=2p;; C;,=2, C;=1. The insets show the
j* —C,. For values ofa| below saturation, the magnitude of currentsj, andj, (in dimensionless forindue to ions originating in
the current increases, somewhat counterintuitively, as thehe left (circles and right(squarey reservoirs, for the casgl=1.
density of traps increases. This is because traps reduce thealues for the current in absolute units can be obtained by substi-
negative current contributiofj from the right reservoiffor  tuting absolute values for the physical paramegem, L, p;, p;, p,
a>0), without affecting the currenf; of ions moving from  andkgT.
the left, as can be seen in the insets, whgrand j, (in
dimensionless formnare plotted individually for the case 9 9 vo
where pL=1. The discontinuity in the current @=0, ob- (v—+a—>f(x,v) = 5(X_XO)[5(U)J dwjw]|f(x,w)
served for finite concentrations of trafs>0), reflects the x v ~vg
fact that the model is no longer valid in the absence of a
field, when there is no stationary solutisince ions that are — 0(vo— |v|)|v|f(X,v)} : (16)
stopped by a trap are not then reaccelenatedthe case of
unequal ion densities in the two reservoirs, the current-
voltage curves are asymmetric, as shown in Fidp).2The
saturation value ofj| is now larger for negative, andj is  Equation(16) can be solved analytically, but we shall instead
negative for small positive values af use simple arguments, as before, to obtain the cujrefith-
Thus far, we have assumed that any ion that encounters@t the explicit form off(x,v). As above, any ion entering
trap is stopped, regardless of its velocity. However, ions witithe channel at the left extremitx=-L/2) with velocity
low kinetic energy could be expected to be more likely to bev >0 will eventually reach the right extremitx=L/2), re-
bound by a polar residue lining a nanopore, than those witlgardless of whether it is stopped by the trap. The contribu-
more energy. We now consider a variation on our previougion j, of these ions to the current is therefore given(b@).
model, in which a single trap is present at positionx, = However, ions entering the channebxatL/2 with velocity
inside the poré-L/2<x,<L/2), which presents an “energy v <0 will only reachx=-L/2 (and hence contribute to the
barrier” of heightEO:mvS/Z to all ions crossingc=x,. We  curren} if they are not stopped either by the field or by the
shall consider two possible modes of action of this trap.  energetic trap at,. There are two possibilities, depending on
In model A, the trap ak=x, stops all ions with kinetic the barrier heighg,,.
energy below the barrier heightnv?/2<E, (and subse- (i) Egp>malxy+L/2). In this case, any ion that reaches
qguently releases them to be reaccelerated by the electribe trap with energy greater thddy, and so is not stopped,
field), but has no effect on ions with energy?/2>E,. The  must have sufficient energy to overcome the remaining part
appropriate kinetic equation reads as follows: of the opposing field betweery and -L/2. In order to have

FIG. 2. Dimensionless curremt = \2mm/(kgT)j/pg as a func-
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energy=E, on reaching the trap a, an ion must enter the
channel atx=L/2 with velocity v such that

m—U2>E +ma<£— )
p ~ o p 0

(17)

so that, assuming an incoming Maxwell distribution, the dis-

tribution function of these ions is

2 2
fr(X,v) = p, 6(— v)e[——ax (E—axo)}
)= el - vi
27TkBT kBT

Using (5) we find that in this case the contribution to the
current due to ions from the right hand reservoir is

(18)

(i) Eg<ma(xg+L/2). In this case, ions which pass
through the barrier axy do not necessarily have sufficient

energy to overcome the remaining part of the field betweerA
Xp and -L/2. The only ions that contribute to the current are

those entering the channel with velocity such that

2

mo
> > mal. (20

These make a contribution to the distribution function,

2
f,(x,v) = p,O(— u)e{v— + a(% —x) - aL}
(5-4)]
5]

N 2771 kBT kBT

(21)
which results in a contribution to the current:
keT malL
- ——exp\—-—— (. 22
PN 27m p{ kBT} (22

The total currenf=j,;+j, for model A is, therefore,
ke 06| Eo- a( +E)
I= 5rml P 0~ Xo 5
Xexp{—E—EG—x)]— 6[ma<x +E>—E]
keT kgT\2 O/ Fr PY R
malL
cod -2 2
kgT

Expression(23) is, of course, only valid for positive values
of a. The equivalent expression wher<0 can easily be
shown to be:

PHYSICAL REVIEW E 70, 021105(2004)

j*

j*

a*

FIG. 3. Dimensionless curreft = \2zm/ (kgT)j/po for Model
[Egs.(23) and(24)] as a function of* = mal/ (kgT), (po defined
as in Fig. 3, for p,=pg; p;=0. (a) Energetic trap fixed at center of
pore, xo/L=0. Solid line: Ey/ (kgT)=0, dotted line:Ey/ (kgT)=0.5,
dashed lineEy/(kgT)=1. (b) Height of barrier fixedEq/ (kgT)=1.
Solid line: xo/L=0, dotted linexy/L=0.2, dashed linex,/L=0.4.

_ keT L
Ja<o= \[5 —prtp 0| Eg+m 5%
E
xexp[ 2

ma(L oy ﬂ
kBT keT\2 °

o )]
P|m2X0 oeXkBT-()

The current-voltage curves for model A are shown in Fig.
3, in dimensionless form as in Fig. 2. For clarity, we consider
the case where only the right-hand reservoir contains ions:
p=0. In Fig. Ja), the position of the trap is fixed a,=0
and the barrier heighy/kgT is increased. Whemal/kgT
exceeds the critical value, given loyal=Eqy/(1/2+Xy/L),
no longer depends dg, and all the curves become identical.
However, in the regime whemmal<Eq/(1/2+xy/L), j de-
pends strongly oiky, being increased on increasing the bar-
rier height. This can be easily understood, since ions that
come from the right-hand reservoir and are impeded by the
barrier make a negative contribution to the current. An inter-
esting general observation can be made here, that the pres-
ence of an energetic barrier can have the effect of increasing
the ionic current. In Fig. @), the barrier height is fixed
(Eo/kgT=1) and the trap is moved toward the right-hand end
of the pore. The current-voltage characteristics are seen to be
rather sensitive to the position of the trap in the regime
maL<Ey/(1/2+xy/L), although there is no dependence for
larger mal/kgT. As X, increasesj decreases, although the
value asa— 0 remains unchanged.
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We also consider an alternative energetic barrier modeljnear combination of the two solutiorf28) and(29):
model B. Here, ions encountering the trap with energy

greater than the barrier heighy?/2>E,, do not continue m p{ m (2

unperturbed, as in model A, but instead lose ené&gyeing f(x,v) =/ [A exp) — —(— - ax)
released by the trap with reduced velocity, where|v’| 2mkgT kg 2

=\v?-v3. Less energetic ions withw?/2<E, are stopped m a\?

by the trap, as in model A. Following a line of reasoning as +Bexp) - 2k T v- ;, ' (30

for model A, one finds that the total currefwthena>0) is

KaT m E Distribution (30) indeed satisfie$26) for all values of the
j= ﬁn[p' - py €Xp) — k—_|_<aL + EO) } . (25  coefficientsA andB. Imposing the boundary conditioiia7),
Q B

we obtain

Note that for model B, the currefptdoes not depend on the
positionx, of the trap. Comparing expressio2s) with (14) malL malL

and (15), we see that the current in model B with energy mexp{ }_Pr p{— }
barrierE, is identical to that through the channel with stop- B=

ping traps investigated at the beginning of this section, if
Eo/keT=/"2,0(x")dX .

where
IV. FINITE CHANNEL WITH FRICTION

. [ maL ma’

We now turn to a model where no stopping traps areX=2sinh —— |exp) - ——

present] p(x)=0], but ions undergo frictional collisions in- 2keT 2kgTy?

side the porgof finite lengthL). This model might apply to a [2#m malL _[maL) (2

pores with few specific ion-pore interactions, such as carbon +—1\/~ | c0s +sin Jy @' (v)dv
o . o ksT 2kgT 2kgT/ J_a

nanotubes of finite length or aquaporins. The thermalizing Y

effect on the ion of these collisions with the channel surface (32

and with other moleculege.g., watey is modeled by a

Langevin mechanism, represented by a Fokker—Planck opyq
erator, so that the stationary state kinetic equatibnnow

becomes
A 1 { . a /27TmB:| (33
J J J kgT 0 = [ U Y g = )
(v—+a—)f(x,v)= y—(v+i—)f(x,v). (26) 25in|‘< ma'—) vV keT
X v v m dv
2kgT
Equation(26) may be solved subject to boundary conditions
specifying the incoming particle fluxes from the ldgft=  The current through the channel can then be calculated using
-L/2) and from the righi{x=L/2), i.e., Eqg. (5):
” L kgT
L vf(—a,v>dv=p|\/$, (279 j=%B. (34
0 L keT Expression(34) for the current simplifies greatly in the limit
f vf > dv =-p; o (27b)  of vanishing applied fielda— 0), when the only driving

force is diffusion under the action of the density gradient
In the limit of an infinitely long channell — =), the dis-  (p—py)/L. Substituting(31) into (34), one finds
tribution must be homogeneolfx,v) — f(v)]; the solution

of the corresponding Fokker-Planck equatjoa., (26) with- o kT 1= pr
out thevd/ dx operator in the free flow terjris :lalmoj = 2mm(1+ L' (0)) (35
m a\?
f(v) ~ exp) - KT\ ) | (28 je., the friction reduces the current by a factor[1l/

. . _ +yL¢"(0)] compared to the free-flow resulf). Thea—0
On the other hand, a particular inhomogeneous solution ofmit of the distribution functionf(x,v), .o and the resulting

Eq. (26) in a finite channel is density profile are discussed in Appendix f8x,v), o for a
m [ v2 givenL andy turns out not to be everywhere positive, point-
f(x,v) ~ exp) - k_T<E —ax) (29 ing to a fundamental difficulty in applying the FP equation
B

(26) in a system of finite spatial extensian Another inter-
We now look for a solution of the FP equati(@6) for finite ~ esting case is the limit of strong frictioy— ). B then
L, satisfying the boundary conditiori27), in the form of a  becomes
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_ _ malL ’ I @
P~ pr€X KaT . _
2 (36) t :

limB=

Yo malL
l-expy———
kgT

and the resulting current, given by insertigg6) in (34),
reduces to the classic expression of GHK, which arises from
solving the 1D diffusion equation in a constant external field

[6].

GHK theory predicts that the current increases linearly
with voltage across the channel for large voltages. However,
the behavior ofj for large a in this model is considerably
different: fixing y and taking the limia— « in Eq. (31), we
find that the current saturates for large applied fields.

L kgT
limi= — 37
aLocJ pl 27Tm ( a)
L ke T
limj=- —. 37b
a_}_wJ Pr 27m ( )

Equations(37), which are identical to the saturation values

of the current for the models presented in Sec. lll, corre-.
spond to the situation where all ions crossing the channel iﬂ
the direction of the field contribute to the current andall ions,

. . - d
attempting to penetrate the channel against the field ar§a~esults predicted by GHK theoryb) Reservoir densities, = po;

turned back. P
. . . . =0 (above andp,=0; p= below); again, inset shows results
An important experimental quantity is the “reversal Fo)lfGI—fK the?)ry. pr=0: = po (below: ag

potential"—the voltage across the channel for which the total
ionic current is zero. In the case where the ionic species are
the same in the two reservoirs, the acceleratigiat which

the current i_s zero is given by canceling the numerator of \yu next address the full version of the model system
(31, which yields described in Sec. II: single ions moving under the influence

FIG. 4. Dimensionless curremt = \27m/ (kgT)j/pg as a func-
on of a*=mal/(kgT), for values of dimensionless frictioy*
Lyym/(kgT) of 0.1 (solid lineg, 1.0 (dotted liney, and 10.0
ashed lines (a) Equal reservoir densities, = p,=pg; inset shows

V. INFINITE CHANNEL WITH FRICTION AND TRAPS

T of a constant accelerating field, a FP thermalizing mechanism
=B In[&] . (38) and stopping traps. We shall consider only the case where the
mL [ p velocity of an ion encountering a trap is set to zero, irrespec-

. . . . tive of its initial velocity, and where the average distribution
Expression(398) is identical to the GHK prediction. However, of the traps is uniform(p(x)=p). An analytic solution of the
if the reservoirs contain different species, for example, po}LI

. X ; kinetic equation(1) is presented in the limit of an infinitely
tassium on one side and sodium on the other, the model wi : . : )
no longer agree with GHK theory. ng pore(L — ). This solution may prove useful in analyz

Plots of the dimensionless currejit versus the dimen- ing ion flow through carbon nanotubes or the long pores

. . AN found in zeolitegspecific pore-ion interactions in the zeolite
sionless acceleraticat are shown in Fig. 4, for values of the h Is bei d by th :
dimensionless frictiony* =Lyym/(kgT) of 0.1, 1.0, and channels being represented by the stopping Jraps .

. \ B e We first introduce dimensionless position and velocity
10.0. In both Figs. @) and 4b), the insets show the results :
; variablesy andu

of GHK theory. Figure @) shows the current through the
channel when the ionic concentrations in the two reservoirs
are equal (p,=p;). While GHK theory predicts linear 1

asymptotic behavior, the current given by E84) shows x= py, (399
saturation aga|— . As the friction coefficient decreases,

the current-voltage relation becomes steeper and deviates

further from the GHK results. In Fig.(8), the current shown keT

in Fig. 4@) is divided into the contributions of ions originat- 0= U (39b)

ing in the right(shown abovgand left(shown below reser-
voirs. As expected, for large positive the current is due
only to ions from the left, and for large negatiagit consists as well as a dimensionless distribution functiéity, u)
only of ions from the right. through the transformation
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1 kgT \1 [kgT
f(x,v)dxdv = f(—y, \/ Lu)— \/ 2 dydu= F(y,u)dydu
p m /pV m

(40)
Using (39) and (40), the kinetic equatioril) becomes

(8L + |
ﬁuay a&u y,u

- B{ S(u) f dwwlF(y.w) — JUlF(y, u)}

Jd d R
+ —(u + —) F(y,u) (41) FIG. 5. Currenti=+m/(kgT)j as a function of, for values ofg
au\  au of 0.0 (solid line), 0.25 (dotted ling, 0.5 (dashed ling and 0.75

where the dimensionless coefficientsand 3 are defined by  (dot-dashed ling Inset: Total (dashed lingas well as components
of J toward the rightcircles and toward the leftsquarey for the

a |/m =
a=Z1]—, (423 case whergg=0.5.
y VkgT

The inset shows the forward and backward componengs of
p [kgT when 8=0.5 [given by integrating over the coefficients of
B= ; V' m (42b) 6(u) and 6(-u) in Eq. (44)]. There is a qualitative difference
in the behavior of the current whe®=0, where the relation
We were unable to solve the inhomogeneous equaddn  petweend and « is linear, as noted above, and whgr- 0,
analytically. An analytic solution may, however, be obtainedwhere it is nonlinear. Thus even a very small density of
in the limit of an infinitely long porelL — <), when the ion  stopping trapsfor example, due to defects or impuritjesn
distribution no longer depends gnand the problem is spa- have a dramatic effect on the current flowing through the

tially homogeneous. Equatiadl) then simplifies to pore. On estimating typical values of the physical parameters
dF(u) +o0 a, 7, m, andp, we find thata and 8 are in fact likely to be
a = B 6(u)f dww|F(w) — uF(u) small, perhaps of order 0.01-0.1.
+ i(u + E)F(u). (43) VI. FINITE CHANNEL WITH THERMALIZING
du du CENTERS AND TRAPS
The solution of Eq(43) is obtained as sketched in Appendix  In Secs. IV and V, the effect of friction and thermalization
C. The result is on the motion of single ions was modeled by the FP collision
(U- a)? operator. For the channel of finite length, this leads to the
F(u) :Aexp{— i|{(9(U)D’B(B+a)(a’+ 2B)Dg(p-q) fundamental problem that imposing the incoming ion fluxes
4 from the reservoirs at both ends of the channel results in a
X(U=a+2B)+ (= U)Dgp-u(— @+ 2B)Dgpra stationary distribution functiori(x,v), which is not positive
definite (see Appendix B In this section, we therefore re-
X(-u+a+2p)}, (44) place the FP mechanism by an alternative thermalization pro-

where theD,(2) are parabolic cylinder functions. The con- C€SS- We consider a model in which the 1D channel contains

stantA determines the number density of ions inside theN ‘thermalizing centers,” at positions, such that
channel(in a finite channel this would be set by the reservoir L L
densitie$; here, we assume one ion per unit channel length, ) X <X < ... <X < > (45)
so thatA can be obtained numerically from the normalization
condition [72F(u)du=1. When an ion reaches a thermalizing center, its incoming ve-
In the limit 3—0, i.e., in the absence of trap@l4) re- locity v is replaced by a new velocity’ drawn from a Max-
duces to the resul28) {noting thatDy(z)=exd-z?/4] and  well distribution'(v’), Eq.(3). The channel also contains a
reverting to dimensional unifsand the currentis linear in.  series of “energy barriers,” of the type denoted “Model A” in
In the limit «— 0, i.e., in the absence of acceleration, theSec. Ill: a barrier of heighE; temporarily stops an ion with
solution(44) is seen to be an even function wfso that the  kinetic energymv?/2 <E; but has no effect ifw?/2>E;. An
currentj vanishes, as expected for an infinitely long, spa-energy barrier of heighE; is located between each pair of
tially homogeneous channel. neighboring thermalizing centers gt; andx;; if E;=0, this
In the general case, when bothand 8+ 0, the current is equivalent to having no energy barrier present. In between
must be calculated by numerical integration, after substitutencounters with thermalizing centers and energy barriers,
ing (44 in (5). Figure 5 shows the curredt= [~ uF(u)du  ions move with constant acceleratianwhich is taken to act
=ym/(kgT)j, as a function ofa for 8 between 0 and 0.75. toward the right. These models might be appropriate to cases
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where both thermalization and pore-ion interactions are sig- 0o=0, Ons1=1. (51

nificant, and where the channel structure is known, such as

biological ion channels. Defining the differenced;=q;—q;_4, one finds from(50) that
We now analyze the stochastic process defined by this

model, leading to an exact calculation of the stationary cur- Aiq 1 p(i —i-1)

rentj. The key quantity is the probabilitg(i —i+1) that an A = ol —i+1) L= pi—i+1) (52

ion that is thermalized by the centert subsequently en-

counters the next thermalizing centen@t (i.e., it reaches  Taking the product of both sides of EG2) over 1<i<n
Xi+1 before x_;). We first note that an ion that leaves the |g5(s to

center atx;, moving toward the left, requires minimal energy

e(i,i—1) to penetrate the field and energetic barrier and reach n oA _ n (i—i-1)
the center ak;_;, where 1= = Gn+1= G _ 7 P ' — ' _ (53
i-1 A of} iz1 P(i —i+1)
e(i,i—1) =max —x_q) +E;. (46)

We shall adopt the convenient notatigg=—L/2 andxy,,  Summing both sides of the second equality in Exf) over
=L/2, so that Eq(46) remains valid fori=1 and fori=N ~ 1=<n<N, we arrive at

+1. lons leavingx; toward the left with energy less than N on

e(i,i—1) will be stopped(before reaching;_;) and reaccel- 1-q; D p(i —i-1)
erated toward the right, returning i@ Since ions leave the 0 =l —i+1)
thermalizing center with a Maxwell velocity distribution, the =Lt
probability w(i,i—1), that an ion leaving (in either direc-
tion) has energy less thaati,i—1) is given by

(54)

The only ions that make a contribution to the current are
those that come from the left reservoir, pass through the

2 (Veli—DkgT whole channel, and exit at the right end, and those that come
w(i,i—1) :?f duexp(- u?). (47)  from the right reservoir and exit at the left end. We now
VJo calculate the probabilityp(-L/2— L/2) that an ion entering

An ion that leaves; toward the right, on the other hand, will the channel from the left reservoir will exit through the right
certainly reach the thermalizing centersay, regardless of ~€nd, and thus contribute to the current. On entering the pore

whether it is stopped by the energetic bariier,. Thus on  at —L/2, the ion will reach the thermalizing centenatwith

1/2), and reachx.,,, or it may be sent to the left, be stopped (54). (48), and(49), leads to

and return tox; (with probability w(i,i—1)/2), or, lastly, it Non i

may be sent to the left and reagh;. (i—i-1)
The probabilityp(i —i+1) that an ion leaving; reaches p(-L2—L/2)=0q,= {1 +§_" H oli =i+ 1)}

i+, beforex;_; can be found by summing over all the pos- i

sible ways that this might happen. Theh term in the series NN o 1
corresponds to the scenario where an ion is setimes to =11+ H [1-w(i,i-1)]
the left(i.e., towardx;_;) and returns to; before eventually n=1i=1

being sent to the righti.e., towardx;,,). We thus obtain a (55)
geometric series

o o ) Consider next an ion entering the channel from the right. It
i Hi+1):}+}{w} +}[M] ‘. will reach the thermalizing center at, with probability
2 2 2 2 2 exgd—e(N+1,N)/kgT]. Therefore,
1
= . 48 L/’2—-L/2)=(1- —-e(N+ 1,N)/kgT].
P wiioD) (48) p(L/2— - L/2) = (1 -qguexd - e(N+ 1,N)/ksT]. (56)
The probability for the transition in the opposite direction We find gy by settingn=N in Eq. (53) and using Eqs(49)
(X to x_,) is then clearly and(56)
1-w(i,i-1 N
p(i—»i—l):l—p(i—>i+1):M_ (49) 1-q 'qu(IHI_l)
2-w(i,i-1) N li:1 p(i —i+1)
The probabilities(48) and (49) may now be used to deter- N
mine the probabilityg; that an ion starting fromw; eventually . . (i s
leaves the channel through the right enchat,=L/2. Theg p(-L/2 L/Z)E[l wii,i = 1)1, (57
satisfy the(detailed balangeequations
(i = 1) L . We now combine Eqg55)—57) and conclude that ions com-
6= P =1 =1Gy +pli =1+ 1)y (50 ing from the right reservoir contribute to the current with
with the boundary conditions probability
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-e(N+1,N
Hil[l_W(U —1)]exp{%}
p(L/2 — —L/2) = = 8 . P e
1+ TLL [ -w(i,i-1)] E
osf S 7 T 1
(58) *H ’ // ,.*" - //'"Mox
.'. /' /" 106
i i i i . 04f : /7 7 o4 %,
The stationary current is given by the sum of the incoming 17 1
fluxes from the left and right reservoit®und by assuming 02" R
incoming Maxwell distributions multiplied by the prob- ¢ (@) L
abilities p(-L/2—L/2) and p(L/2—-L/2), which deter- 0 ) ) 3 8 10
mine the extent to which the incoming flux is reduced by the a*
action of the thermalizing centers 1
038
S kgT
i=h+ic=\5_lpp(-L/2—L/2) - pp(Li2 — - LI2)]. L
2mm oak £
x| 47 .
(59) oal /""’ﬁ-zﬁ
| ) o
Inserting Eqs(56) and(58) into (59), we find 0 1
0.2 (b) /'..,...,“.,....,".-Ju
2 4 6 8 10
kBT 04 ) a*
] = >mm 0 2 4 o 6 8 10
P - er:\il [1-w(i,i—1)]exd—e(N+1,N)/kgT] FIG. 6. Dimensionless curreft = \27m/ (kgT)j/py as a func-
X N p — . tion of a*=mal/(kgT), where the reservoir densities aig=C,pq
1 +En=1 Hi:1[1 —w(i,i—1)] and p,=C,po, for channels containing an increasing numbkepf
evenly spaced thermalizing centers. Energetic barrier helgldse
(60) all set to zero. Solid lineN=0, dotted linesN=1, dashed lines:

. . . N=5, dot-dashed lines\=10. (a) Equal reservoir densitieg,=p;;
Combined with formulag46) and(47), Eq. (60) provides an C,=1,C=1.(b) p,=2p: C,=2,C,=1. The insets show the currents

explicit expression fof as a function of parameters defining j ‘angj, (in dimensionless formdue to ions originating in the left
the internal structure of the channel. In the absence of aRgircleg and right(squares reservoirs, whem=5.

plied field (a=0) and energy barriergall E;=0, w(i,i-1)
=0) the current60), now due to the effect of the thermaliz-

ing centers only, takes the particularly simple form Formula (60) simplifies greatly when the thermalizing

centers are evenly distributed and in the absence of energy

” B barriers, i.e., wherf{x,—x;_;)=L/(N+1) and E;=0 for all 1
i = A | KeT | = pr , (61)  =<i=N.In that case,
2mm| N+ 1
i.e., both incoming fluxes are reduced by the same factor - 1-s ﬁ[m—pSN ex __mal }
1/(N+1). The prediction(35) of the FP equation under the 1-sN V27am ' (N+DkgT | |’
same conditionga=E;=0) coincides with(61), provided (63)
N ———
n = yWm/27kgT. (62)  where
The “effective friction” introduced by the thermalizing cen- s= = ) du exp(- 1?) (64)
ters is thus proportional to their density. Physicalé?) also Vo) [_amL '
means that the relaxation time® is of the order of the time (N+1)kgT
taken by an ion to cover the average distah¢dl between Figure 6 shows the effect on the dimensionless curpent

the thermalizing centers with velocitykgT/m. This equiva-  of increasing the numbeX of evenly spaced thermalizing

lence between the FP and thermalizing center results doegnters, when there are no energetic bariigrs 0 for all i).

not hold, however, in the presence of an accelerating fieldn Fig. 6a), the reservoir densities are equal=p,=po. As

(a#0). N increases, the current decreases, requiring larger values of
As in the case described by the FP collision t¢ofa, Eq.  the dimensionless acceleratiahto approach its asymptotic

(37)], the currentj saturates for large applied fielda— «) value. The inset shows the contributions to tdanension-

at the valugj|. This is because all ions coming from the left lesg current from the left and right reservoirs whéh=5.

are driven through the channel by the strong field, while nd=igure &b) shows results for the same channel, when the

ions are able to cross the channel successfully from the rightlensity of ions in the right-hand reservoir is twice as large as
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toward the right, the ion will certainly reacty,,, while if it
TR TETEEIIT is sent to the left, it will be stopped and return xowith

08l ﬁ,,f.,.f~f' *** probability w(i,i—1), which is an increasing function d;.
- Thus increasindg; increases the chances of an ion eventually
4 . . -
% 06 arriving atx;,4, and thus enhances the current. This phenon-
r— k)

enon may be of interest for biological ion channels, where

04r the selectivity filter might play the role of an energetic bar-
rier.
0.2H
(a)
% 3 4 6 g 10 VIl. CONCLUSION

In this paper, we have introduced some simple 1D kinetic
models for the transport of independent ions through narrow
pores, under the influence of a constant acceleration, due to
an applied external electric field. The models include traps or
energy barriers, which represent the temporary binding of an
ion to polar residues lining the pore surface. They also ac-
count for the friction and thermalization due to collisions of
the ions with moleculege.g., watey inside the pore as well
as with its inner, confining surface. The effect of reservoirs at
. . . . the pore ends is included in the model via boundary condi-
0 2 4 6 8 10 tions, which determine the flux of ions entering the pore.
Analytic results have been obtained for the stationary ion

FIG. 7. Dimensionless curreft = V’mj/ﬁo as a func-  currentj and, in some cases, also for the stationary nonequi-
tion of a* = mal/ (kgT), for equal reservoir densitigs=p,=p,. (8  librium distribution functionf(x,v).

Channel containd\=5 thermalizing centers, evenly spaced in the Initially, the effect of friction and thermalization was in-
range -b/2<x=<bh/2. All barrier heightsE; are set to zero. Solid cluded in the model via a FP operator in the kinetic equation.
line: b=L, dotted line:b=L/2, dashed lineb=L/4. (b) Channel ~ We were unable to find a solution for a pore of finite length
containsN=4 thermalizing centers, evenly spaced in the rangel. when both traps and the FP description of friction are
-L/2<x=<L/2, and one energetic barri&=0, located between present. However, we have derived an explicit solution for
the central pair of thermalizing centers. Solid lir;/(ksT)=0,  the homogeneous case of an infinitely long pore. For pores of
dotted line:Es/(kgT)=1, dashed lineEs/ (kgT) =2. finite length, solutions are given for models with stopping
traps or energy barriers in the absence of friction. For stop-
that in the left,p,=2p,=2p,. In this case, the negative con- ping traps, the current does not depend on the spatial distri-
tribution j, is increased and dominates for small values ofbution of the traps, but for a single energy barrier, there may
mal/ (kgT). be a dependence on its position, depending on its mechanism

We have also investigated the effect of changing the spaef action. We have also solved the kinetic equation for the
tial arrangement of the thermalizing centers, once again islistribution functionf(x,v), for a finite channel in the case
the absence of energetic barriégs=0 for alli). In Fig. 7a@), = where the FP mechanism is present, but there are no traps or
the channel containd=5 thermalizing centers which are all energy barriers. In this case, on imposing the incoming
located in the rangeb/2<x<b/2, whereb<L. Within this  fluxes from the reservoirs at both ends of the pdfg,v)
range the thermalizers are evenly spaced. Results are showmrns out not to be positive definite for short channels and/or
for equal reservoir densitieg,=p,=p,. As b decreases and small values of the friction constant This nonphysical be-
the thermalizers become more localized in the middle of thénavior can be understood in terms of competing time scales
pore, the current increases, approaching its asymptotic valder high velocity iongwhich pass through the channel before
for smaller values of*. However, the results fob=0.59.  they can be thermalizgdthe resulting ion current remains
(dotted line$ andb=0.29_ (dashed linesare rather similar, well behaved, as does the number density profile. In view of
indicating a limiting current-voltage relationship for smiall  this deficiency of the FP mechanism in a pore of finite

Interesting effects are obtained on including energetic barlength, we have introduced an alternative model, whereby
riers. Figure ) shows results for a channel containihNg ions are instead thermalized by encounters with a series of
=4 thermalizing centers, with a single barrtgr located be- thermalizing centers, located at given positions inside the
tween the second and third thermalizérs 3), i.e., in the  pore. Energy barriers may also be present.
central one of the five possible positions. Once aggajn, An important conclusion arising from all the models that
=p,=p,. As the barrier heighE; is increased, the current were considered is that the currgribvariably saturates as a
increases, showing that inserting an impedance to ion pagunction of the external fieldor equivalently the constant
sage can actually enhance the total ion flow through thecceleratiora), since it is limited by the incoming flux from
channel. This apparently somewhat counter-intuitive resulthe reservoirs. This saturation behavior contrasts with the
can in fact be easily understood. Let us consider an ion thdinear increase off with voltage predicted by the classic
is released by the thermalizing centerxatlf it is sent out ~ GHK result, which can be derived by solving the 1D diffu-
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sion equation in the presence of a constant external field. A The distribution functiorf(x,v) is split into the contribu-
further interesting observation that emerges from this work isions f*(x,v) andf~(x,v) of ions moving to the right and to
that the presence of stopping traps or energy barriers insidge left:

the pore can increase rather than decrease the ionic current.

This is because the steady-state flow of ions crossing the f(x,0) = 6V)F*(x,v) + 6(- V)T~ (X,0). (AL)

pore in the direction of the applied acceleration is unaffecte — . . _ .
by the traps or barriers, while the flow of ions against the%UbStltu“ng(Al) into (9) (with p(x)=p), we obtain

field is reduced. When the former contribution is the domi- 9 9
nant one, the current will be enhanced by the traps or barri- v Tatpu f*(x,v) =0, (A23q)
ers.

A question that arises is whether there is any correspon-
dance between the two models of friction and thermalization (Uﬁ + aﬁ - U)f‘(x v)=0 (A2b)
considered in this work: the FP mechansim and the model X v P ’ '

involving N thermalizing centers. In the absence of an ap- . oy imolv th
plied field and of energy barriers, when ionic motion is Equations(A2) imply that

driven only by the concentration gradient across the pore, an f*(x,0) = ex— px]F*(v%/2 - ax) (A3a)
equivalence can be established between the two mécéls ’ ’
Eq. (62)]. However, under more general conditions, we have _ _ 2
found no one-to-one correspondance between the two de- f(xv) = exf px]F~(v7/2 —ax). (A3b)

scriptions of dissipation. S _ _ The as yet unknown functions* and F~ are linked by the
real nanopores, such as ion channels, aquaporins, zeolites, or

carbon nanotubes. More detailed models would explicitly in- .

clude the 3D character of the reservoir. Interactions between 1= f dvvf(x,v) = constant. (A4)

ions are neglected in our model, and these may play an im-

portant part in the mechanism of ion transport through som&ubstituting(A3) into (A4), and definingw=v?/2-ax, we

channels. For ion channels, the electric field is also unlikelyobtain

to be constant within the channel. We believe, however, that .

the analytical results presented here provide some interesting . _ _ +

insights, as well as being a useful starting point for the de- J = constant = exp- pX]f_aXF (wydw

velopment of more realistic models. .

Future work will include a complete numerical analysis of _ -

the model involving both energy barriers and thermalizing extipx] J_aXF (Wjdw.

centers. We also plan to extend the kinetic models to include

the possibility of collective ion permeation through a pore,Multiplying (A5) by exd px] and differentiating with respect

by including ion-ion interactions. These are believed to playto x, we obtain

an important role in ion transport through some biological

channels[8,9,11,12. Appropriate selection of parameters,

such as the pore length, the friction coefficienty, or the

number and positions of the thermalizing centers and the

positions and heights of the energy barriers, to correspond to

the structure of real ion channels, should allow the predic-

tions of these kinetic models to be compared to measured

current-voltage characteristics. Equation(A6) is valid inside the channel, i.e., for values»of
in the range £/2<x<L/2. The argument ax of F* and
F~, therefore, ranges betweeral-/2 andal/2, so that the

ACKNOWLEDGMENTS relationship (A6) between F*(w) and F~(w) holds for

. . . —La/2<w=La/2. Sincew=v?/2-ax, this corresponds to
The authors thank Bob Eisenberg for his advice. J'Pi)2/2sa(L/2+x).

thanks EPSRC for financial support. R.J.A. acknowledges The distribution of particles moving against the field

the support of EPSRC and Unilever. f7(x,v) can be obtained using simple arguments. If a particle
reaches position with negative velocity, then it must have
APPENDIX A had energymu?/2=mv?/2+malL/2-x) at the right-hand
channel entrance and have encountered no traps over the
Here we derive an analytic solution for the kinetic equa-distance(L/2-x), since on encountering a trap an ion is
tion (9), for the case wherp(x)=p; i.e., we find the distri- reaccelerated by the field toward the right. Assuming a Max-
bution functionf(x,v) for ions experiencing a uniform exter- well distribution for the velocities of the incoming ions and
nal electric field and traps distributed according to a Poissomoting that the Poisson probability for encountering no traps
law corresponding to a uniform average dengity over this distance is ekpp(L/2-x)], we find that

(A5)

aFf(-ax) = jpexdpx] + lprm F~(w)dw

—ax

+aF (- ax)} exd 2px]. (AB)
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kgT
f‘(XmFGXF[pX]mV%. Z= \/ﬁn{m—pr exp{- L<p+ g)“

m 2pkgT
X exp[— — %2 —ax)} x P exp{— ﬁvz} + (ﬂ + 1)exp{— Euz]
ke T a 2a am a
L ma ma
xXexp —=|p+— A7 X prp’ <—+ ) -L/2) |, Al3b
P{ 2<p kBT)} (A7) pr (v)eXp[ kT P (x )] ( )
and thus fromA3) and ¢'(v) is the Maxwell distribution function, Eq(3).
EquationgAl1l) and(A12) were derived for an accelerating
W =p\/—— exp[ } xp[ <p+ E‘” field toward the right(a>0). For a<0, the corresponding
27mkgT keT 2\ kgT result for the current is
A8
(A8) o[ keT ma
Substituting the resultA8) into (A6), we find that fory?/2 1=\ o m| P &X ~L{p- KT/ P (A14)
<a(L/2+x):
m 2 [ kgT APPENDIX B
f+(x,v):jgex4:_£v2:|+&|:_+_p:| BT
a 2a alkgT a 2mm In Sec. IV, we constructed the solution of the FP equation
m [ v2 P, (26), satisfying thg boundary condition's g!ven in EG7). .
X exp| - T\ 2 ax pX——v The solution consists of a linear combination of a nonequi-
B a librium stationary homogeneous soluti¢28), which gives
L ma rise to a constant current, and an inhomogeneous equilibrium
X exp|l — > pt El- (A9) state(29), which does not contribute to the current. We thus
found the stationary stai@0), which is of the form
Using a similar argument to that above, we can determine the
remaining part off*(x,v), for v?/2=a(L/2+x). lons with f(x :Aexp[@} (1) + B T( _E) B1
v2/2=a(L/2+x) moving toward the right cannot have been xv) ¢'(v) +Belv y (B1)

stopped by a trap, since their energy is larger than that due
the accelerating field over the distance traveled in the pore
These ions must have entered the pore=atL/2 with en-

ergy mw?/2=mv?/2-ma(L/2+x) and have encountered no

%here ¢' denotes the Maxwell distributio8). The corre-
Sponding curreni and densityn(x) of the ions are given by

traps over a distance/2+x. Assuming a Maxwell distribu- j= ;/B, (B2a)
tion of incoming particles, we obtain a contribution to
f*(x,v) of
~ Aexy M
00?12 - a(Li2 +x))exd - p(L/2 +X)] () =A exp{ kBT:| +B. (B2b)
/ expl - — @2 -a(L/2+x)) |. The imposgd incoming ionic fluxes from the thermostats de-
27rkBT termine uniquely the values & andB [Egs.(31) and(33)].
When the ion density in the right thermostat is related to
(A10) .
that in the left thermostat by the Boltzmann factor
Noting that atx=-L/2, v?/2=a(L/2+x), we can use Egs.
(A7) and(A10) for x=-L/2 to calculate the current: Pr=p exp[ r:_e}:_] (B3)
B

kgT ma
=1/ 2:; {PI P EXP[— L<P+ k—T)” (All)  the coefficientB vanishes and the distributiaiB1) reduces
B

to the well known equilibrium solution of the FP equation
Substituting this result iitA9), the final result for the distri-  (29). When relation(B3) does not hold, however, equilib-

bution functionf(x,v) is rium cannot occur, and a stationary current will flow through
the channel. It can be proved that in this situation the ionic

f(x,v) = 6(- v)p,d)T(v)exp{(E + p> (x— LIZ)} + 6(v) number densityn(x) is positive, but a difficulty arises when
kT one considers the velocity distribution in the region of large

x{0[v22 -alL/2 +x)]Y + 0[a(L/2 +x) -v?2]z},  Velocities. In order to illustrate the problem, let us study the
AL2 simple limiting case of vanishing acceleration. From Eqgs.
( ) (31) and (33) in the limit of a—0 we get the asymptotic

where relations

Pt pr

Y= Pld’T(v)eXP[(g1 - p) (x+ L/Z)} ., (A133) A+B= (B4)

B
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- N ¥ formly, in the limit where the channel is infinitely long and
[1+L¢(0)]B= L (0) 5 2734 (0) (1= pr). the problem is spatially homogeneous.
The first term on the right-hand side of E¢3) describes
(B5) the effect of the stopping trapén terms of a balance be-

The stationary distributioB1) takes the form tween loss of particles of dimensionless veloaitgand gain
of those withu=0). This term may be recast in the form

: _pto g Y (p1 = pr) o
A )= a0 1+ A 6T0) B{ ) [ awiniFy - Wy, u)}
"(v-aly) - mx} 3 ) B6 oo
X <<f> (v-aly) exp{ kT $'(v)]. (B6) :gdiu SgdU)f dwiu— wlF (W)
The evaluation of the point limitat fixed values of the vari- -
ablev) leads eventually to the distribution ~ MJ*‘” dwsgriu —w)F(w)} 1)
— VAT . ’
fa:O(XvU) - [pl +pr + (p) pr)¢ (0) - ‘yX):| ¢T(U).

2 1+9L¢'(0) where sgfu)=6(u)- 6(-u).
(B7) Substituting(C1) into (43), and integrating oveu, one

o . ) ) obtains the following relation:
The distribution(B7) is an inhomogeneous solution of the

' d 1 -
the FP equation <u -—a+ d—)F(u) = E,Bsgr(u)f dwwsgn(u —w)F(w) + C.
2 tx0) = i( + kiTi)f(x ) (B9 ) N
Tax T Y\ Tmoa) (C2
satisfying to the boundary conditiort@7). The current and TN€ integration constarC on the right-hand side of this
the density profile, which is linear, are given by relation is determined by the boundary condition
o lim,_..F(u)=0, which shows that
. h=Ir +o0
=—L B9 .
1= 1,470 (B92) c:—gf dWWF(W)=—'§j (C3)
n(x) = Pt pr + (p—p)¢'(0) " (B9b) wherej is the dimensionless current. Gathering results, Eq.
2 1+yLo"(0) 7 (C2) may be cast in the form
Whereas(x) is positive everywhere within the channel, the d _ +°°
complete distributionf,-o(x,v) is not positive definite. For U=a* F(u)=-4) &) . dwwHw)
example, whenp, <p,, f.-o(X,v) turns negative for suffi- .
ciently large velocities and thus loses its physical meaning. _
Hence it seems that a physically acceptable inhomogeneous to-u e dwwRw) . (C4)
stationary state cannot be obtained from the FP equation. . _ _ .
Notice that one can define a characteristic velooity The structure of the integro-differential equatio@4)
associated with the finite length channel; ions with velocitiessuggests seeking a solution of the form
larger than this will cover the length of the channel in a time F(u) = B(U)F*(U) + 6( U)F(U) (C5)

interval that is shorter than the FP thermalization tign& It

turns out that whenv<+9lL, the distribution function WwhereF* andF~ satisfy the equations

fa=0(X,v) >0, and so the difficulty appears only for velocities d m

larger thanyL. Clearly, when the friction coefficieny is (u— a+ —)F"(u) = —,Bf dwwF(w), (C6a
large enough the nonphysical region is quantitatively irrel- du u

evant because of the negligibly small probability weight

coming from the Maxwell distribution. From a fundamental d\ _ !

point of view, however, the solutio(B7) demonstrates that u-a+- - JF w=-8 B dwwF(w) — (C6b)

the FP equation is incompatible with the boundary conditions

(27) for a channel of finite length. to be solved, subject to the boundary condition
F*(0)-F(0)=0. (C?

APPENDIX C Differentiation of(C6a) leads to
In this section, we describe the solution of the kinetic o, dF*(u) .
equation(43), for ions flowing through a channel under the @F (u+Uu-a au T (1-pu)F(u)=0. (CY

influence of a uniform accelerating field, a FP friction
mechanism and stopping traps distributed on average unBeeking a solution of the form

021105-14
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F*(u) = exd - (u- a)?4]G*(u) (C9) F~(u) = exfd— (U~ a@)?/4]D g+ oy(— U+ a + 2B)
and substituting ifC8), one arrives at the following differ- (C13
ential equation foiG*(u):
G+ 1 ( +28) and hence,
u u-
#|Z+p8- 0 -2 (G =0,
duv? 2 4 F(u) = expl— (U~ a)2/4] X {A0(- U)D g geeg(~ U+ @+ 2B)
C10
(C10 + Ap0(U)D g gy (U= a + 2)}. (C14)
the solution of which is
G*(U) = Dy g (U= ar + 26), (C11) A relation between the coefficients; and A, follows from

the boundary conditioC7), namely,

whereD,,(2) is a parabolic cylinder function. Hence,
AD +2B)=ADgsp(-a+2B), (C1
F+(u) - exn:_ (u _ a)2/4]DB(B—a)(u —a+ Zﬁ) (ClZ) 1 ﬁ(ﬁ+a)(a B) 2% B(B a)( a B) ( 5)

Proceeding along similar lines, one finds the solution offrom which the general solutiotd4) in the main text fol-
(C6b) in the form lows.
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