
Kinetic models of ion transport through a nanopore

Jaroslaw Piasecki
Institute of Theoretical Physics, University of Warsaw, Hoża 69, 00 681 Warsaw, Poland

Rosalind J. Allen* and Jean-Pierre Hansen
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 8 March 2004; published 31 August 2004)

Kinetic equations for the stationary state distribution function of ions moving through narrow pores are
solved for a number of 1D models of single ion transport. Ions move through pores of lengthL, under the
action of a constant external field and of a concentration gradient. The interaction of single ions with the
confining pore surface and with water molecules inside the pore are modeled by a Fokker-Planck term in the
kinetic equation, or by uncorrelated collisions with thermalizing centers distributed along the pore. The tem-
porary binding of ions to polar residues lining the pore is modeled by stopping traps or energy barriers.
Analytic expressions for the stationary ion current through the pore are derived for several versions of the
model, as functions of key physical parameters. In all cases, saturation of the current at high fields is predicted.
Such simple models, for which results are analytic, may prove useful in the study of the current/voltage
relations of ion channels through membranes.
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I. INTRODUCTION

The flow of fluids through porous media is a classic prob-
lem that has many scientific and industrial applications. For
very narrow pores, with diameters of the order of 1 nm or
less, continuum descriptions become inapplicable and the
transport of matter must be examined on the molecular scale.
Examples include molecular or ionic permeation of zeolites
[1], of carbon nanotubes[2–4] and of aquaporins[5] and ion
channels[6] through cell membranes. The simple kinetic
models examined in this work are meant to crudely represent
ion channels; they are, however, also more widely appli-
cable. For example, we shall present results for ions flowing
through an infinitely long pore that might represent a carbon
nanotube or part of a zeolite.

Ion channels are pores in cell membranes, through which
ions are transported under the influence of a concentration
gradient and a large electric field. The permeability of the
pores is highly selective for particular ions and the pores can
also open and close to ion transport(a phenomenon known
as “gating”) in response to factors such as ligand binding or
changes in the electric field or the membrane tension. Many
channels contain a narrow region, the “selectivity filter,”
where ionic motion is essentially single file[7–10]. Some
channels appear to transport only one ion at a time, while
others use transport mechanisms involving multiple ions
[8,9,11,12]. Measurements of the current through individual
channels have been possible for some time, and these have
resulted in a large amount of data, both on the gating char-
acteristics of channels and on their properties in the open
state. These properties include the relationship between the

ionic current and the electric field applied across the mem-
brane(current-voltage relations), as well as the conductivity
of the channels as a function of the ionic concentration dif-
ference, at fixed applied voltage(conductance-concentration
relations). One of the challenges for theoreticians is to relate
these functional characteristics to the geometric, physical,
and chemical structure of the pores, which are becoming
increasingly well known[13]. This goal may be achieved by
detailed simulations of the motion of ions and molecules
through specific pores[14,15], or using simplified models
[16–19]. Rates of ion transport can be predicted directly, or
by application of barrier-crossing theories, such as Kramers
rate theory[20–22]. An alternative approach is the extension
of continuum theories to the nanoscale. Goldman[23] and
Hodgkin and Katz[24] (GHK), in their classic work, applied
the 1D diffusion equation in a constant electric field to pre-
dict current-voltage relations for ion channels. This work is
generalized to specific and multidimensional ion channel
models in the Poisson-Nernst-Planck(PNP) theory of ion
channels[25,26], where numerical solution methods are used
to obtain the current due to diffusion in the presence of com-
plicated and self-consistent potential fields.

In this paper, we explore the possibility of applying
simple, analytically solvable, kinetic models to the problem
of transport in nanopores. Our approach is, for the moment,
very general. We consider the motion of single ions through
a 1D pore of lengthL connecting two reservoirs at different
ion concentrations, under the action of a constant electric
field (we shall also consider the case of an infinitely long
pore). The effect of the reservoirs is included via boundary
conditions at the pore ends, which impose the velocity dis-
tribution of the incoming ions(in the case of Langevin fric-
tion only the total incoming flux is imposed). In this simpli-
fied model, the detailed behavior of the ions at the pore ends
is not considered: a more complete description would of
course include a 3D representation of the reservoir(allowing
boundary conditions to be set far from the pore). In a more
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complete picture, the electric field would also be determined
self-consistently, including the change in dielectric environ-
ment experienced by the ions on entering the pore. However,
our purpose here is to present a simple model that can be
solved analytically. Returning to our model, ions are ex-
pected to experience friction due to collisions with the inside
surface of the pore and with other particles, such as water
molecules, inside the pore. We include this effect initially by
a Langevin-like friction within the framework of a Fokker-
Planck (FP) description, although we shall see that the FP
approach presents some difficulties in the confined geometry
of the finite length pore, which we shall attempt to overcome
by using an alternative description of the friction in terms of
localized “thermalizing centers.” We also consider that there
may be more specific binding interactions between the ion
and the pore surface, for example, with polar residues lining
the surface. These are modeled by “stopping traps”—on en-
countering such a trap, an ion is stopped and later released to
continue its motion under the influence of friction and the
electric field. The action of the stopping traps on the ion may
or may not depend upon its velocity. In all cases, we attempt
to find general analytic solutions for the stationary state ionic
current j , and sometimes also for the ion distribution func-
tion fsx,vd [defined so that the average number of ions be-
tween positionx and x+dx with velocity betweenv and v
+dv is fsx,vddxdv]. These solutions are functions of the ap-
plied field, as well as of parameters, such as the channel
length, friction coefficient, and probability density of stop-
ping traps. We hope that these results may ultimately be used
to analyze the transport behavior of specific pores or chan-
nels, by adapting the above physical parameters to the
known structure of the pore under consideration.

The general kinetic equation for the model is presented in
Sec. II. The kinetic equation is solved in Sec. III for the case
of a finite-length channel with stopping traps but without
friction, and in Sec. IV for the case of a finite channel with
friction, but without traps; difficulties arising from the use of
the FP operator in a pore of finite length are discussed. These
difficulties do not arise in the case of an infinitesL→`d
channel, for which a general solution is obtained in the pres-
ence of both friction and traps, in Sec. V. Returning to a
finite-length channel in Sec. VI, the FP friction is replaced by
a distribution of thermalizing centers throughout the pore,
and an explicit expression for the current is obtained in the
presence of such thermalizing centers and stopping traps.
Concluding remarks are made in the last section.

II. MODEL AND KINETIC EQUATION

Our model channel is pictured in Fig. 1. The channel of
length L is located along thex axis s−L /2,x,L /2d. The
radius of the pore(which is assumed to be cylindrical)
matches the ion radius, so that ionic motion inside the pore is
strictly 1D. The pore links two reservoirs containing ionic
solutions of linear concentrationsrl (to the left) and rr (to
the right): rl andrr are related to the bulk concentrationscl
andcr in the reservoirs byrr,l =pR2cr,l, whereR is the radius
of the pore. The inner surface of the pore is lined with stop-
ping traps of local average densityrsxd: we shall assume that

the probability of finding n traps within the interval
x1,x,x2 is given by the Poisson distribution with param-
eterex1

x2rsxddx.
If an ion encounters a trap, its velocity is set to zero,

generally irrespective of its initial velocity(although we
shall also consider in Sec. III the case of traps which dis-
criminate between ions according to velocity). Inside the
pore, the ion(of chargeq and massm) is subjected to a
uniform electric fieldE, and hence undergoes an acceleration
toward the right,a=qE/m. After being stopped by a trap, the
ion is therefore reaccelerated by the electric field. Ions also
experience friction: this will initially be modeled by a force
−gv, wherev is the velocity of the ion, as well as the ther-
malizing effect of a random force, although an alternative to
this Langevin-like model will be presented in Sec. VI. In
summary, the ion undergoes a constant acceleration due to
the electric field, is slowed down by collisions with mol-
ecules inside the pore or on the pore surface(these processes
being described by a friction process), and may be captured
by traps along the channel to account for temporary binding
to polar residues on the pore surface. We shall present results
for stationary-state ion flow only.

The general kinetic equation for the stationary-state ion
distribution function fsx,vd, in the presence of Poisson-
distributed stopping traps of average densityrsxd as well as a
Langevin-like friction mechanism, with friction coefficient
g, is

Sv
]

]x
+ a

]

]v
D fsx,vd

= rsxdHdsvdE
−`

`

dwuwufsx,wd − uvufsx,vdJ
+ g

]

]v
Sv +

kBT

m

]

]v
D fsx,vd. s1d

The left-hand side of(1) describes free flow of ions under the
action of the constant accelerationa arising from the external
field. The right-hand side contains two collision terms. The
first accounts for the stopping traps: it is a balance between
gain(in the population of zero velocity particles) and loss(of
particles with velocityv). The second term is the FP operator
acting on the distribution function: it accounts for the effect

FIG. 1. Schematic view of the model channel.
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of the frictional and random forces. Note that the kinetic
equation(1) is for a single ion: it does not account for inter-
actions between several ions within the pore. This limitation
will be addressed in later work.

The reservoirs on the leftsx,−L /2d and on the right
sx.L /2d of the channel are assumed to contain ions in ther-
modynamic equilibrium at the same temperatureT, but gen-
erally at different densities:rl (to the left) and rr (to the
right). The ion distribution functions in the reservoirs(not
including the contribution of any ions coming out of the
pore) are, hence,

f lsx,vd = rlf
Tsvd, f rsx,vd = rrf

Tsvd, s2d

where

fTsvd =Î m

2pkBT
expF−

mv2

2kBT
G s3d

is the Maxwell velocity distribution function.
For illustrative purposes, we first consider the case where

acceleration, traps, and friction are all absent, and an ion
which enters the pore at one end keeps the same velocity
until it reaches the other end. The ion distribution function
within the pore is then simply

fsx,vd = frlusvd + rrus− vdgfTsvd, s4d

whereu denotes the Heaviside step function. The ion current
is given by

jsxd =E
−`

`

dv vfsx,vd. s5d

For a stationary state, continuity requires that the current be
independent of position:

djsxd
dx

= 0. s6d

Substituting(4) into (5), one finds the result in the absence of
acceleration, traps, or friction:

j =Î kBT

2pm
srl − rrd s7d

while the number density inside the channel

nsxd =E
−`

`

dv fsx,vd s8d

is in this case given byn=srl +rrd /2. Note that discontinui-
ties arise innsxd at the pore boundaries,x=±L /2; this reflects
the fact that the regions close to the pore mouth are not
modeled in detail in this simple theory.

In the subsequent sections, analytic solutions of the ki-
netic equation(1) will be derived for the limiting casesg
=0 (Sec. III), rsxd=0 (Sec. IV), andL→` (Sec. V).

III. FINITE CHANNEL WITH TRAPS

Consider a pore of finite lengthL, containing stopping
traps but no friction mechanism. The traps have average lo-

cal densityrsxd and are distributed according to a Poisson
law as described in Sec. II: on encountering such a trap, the
velocity of an ion is reduced to zero. In the absence of fric-
tion, the kinetic equation(1) for the stationary-state ion dis-
tribution function fsx,vd simplifies to

Sv
]

]x
+ a

]

]v
D fsx,vd

= rsxdHdsvdE
−`

+`

dwuwufsx,wd − uvufsx,vdJ . s9d

Note that we obtain Eq.(6) (constant current throughout the
pore) on integrating both sides of(9) over all velocities
−`,v, +`. If the traps are on average uniformly distrib-
uted frsxd=rg, Eq. (9) can be solved exactly forfsx,vd as
shown in Appendix A. An expression for the ionic currentj
can, however, be obtained for anyrsxd using simple argu-
ments, without the need for an explicit solution forfsx,vd.

We first note that in the stationary state, the contribution
to the current due to an ion which enters the channel at one
end depends only on its incoming velocity and its probability
of eventually arriving at the other end, sincej does not de-
pend onx (and there are no interactions between ions). For
this model, all ions entering the channel from the left reser-
voir at x=−L /2 will eventually reachx=L /2, since on being
stopped by a trap they are reaccelerated by the field toward
the right (assuminga is positive). Thus the contribution of
these ions to the current is

j l = rlÎ kBT

2pm
. s10d

Ions entering the channel from the right atx=L /2 will reach
x=−L /2 only if they are not stopped either by the opposing
field or by an encounter with a trap. An ion that is stopped is
reaccelerated toward the right, so that it will exit the channel
at L /2. The Poisson probability of encountering no traps be-
tweenx1 andx2 is

Psx1,x2d = expH−E
x1

x2

rsx8ddx8J , x1 , x2. s11d

In order to overcome the opposing field, ions must enter the
channel with kinetic energymv2/2.maL, so that, assuming
a Maxwell distribution of velocities atL /2, the distribution
function f rsx,vd of particles that entered the channel atL /2
and that will eventually reach −L /2 is

f rsx,vd = rrus− vduFv2

2
+ aSL

2
− xD − aLGÎ m

2pkBT

3expH−
m

kBT
Fv2

2
+ aSL

2
− xDGJPS−

L

2
,
L

2
D
s12d

from which Eq.(5) leads to a contribution to the current
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j r = − rrÎ kBT

2pm
expH−

maL

kBT
−E

−L/2

L/2

rsx8ddx8J . s13d

Adding (10) and (13) leads to the result forj :

j =Î kBT

2pmFrl − rr expH−
maL

kBT
−E

−L/2

L/2

rsx8ddx8JG .

s14d

For a uniform distribution of traps, Eq.(14) reduces to

j=Î kBT

2pm
Frl − rr expH− LSr +

ma

kBT
DJG s15d

in agreement with the full solution derived in Appendix A.
Equation(14) shows that in this model, in the absence of
friction, the current does not depend on the spatial distribu-
tion of the stopping traps, but only on the integral ofrsxd
betweenx=−L /2 andx=L /2. Note that Eqs.(14) and (15)
were derived fora.0. Whena,0, the roles of the right and
left reservoirs must be interchanged.

If the reservoir densitiesrl andrr are measured relative to
an arbitrary “reference density”r0, such thatrl =Clr0 and
rr =Crr0, a dimensionless form of the current is given by
j * = Î2pm/ skBTd j /r0. This is plotted in Fig. 2, for the cases
where the reservoir densities are equalsCl =Crd or different
sCl ,Crd. Figure 2 shows that the current saturates for large
uau. For positivea, the current at saturation is due exclusively
to ions from the left reservoir andj * →Cl; for negativea,
j * →Cr. For values ofuau below saturation, the magnitude of
the current increases, somewhat counterintuitively, as the
density of traps increases. This is because traps reduce the
negative current contributionj r from the right reservoir(for
a.0), without affecting the currentj l of ions moving from
the left, as can be seen in the insets, wherej r and j l (in
dimensionless form) are plotted individually for the case
where rL=1. The discontinuity in the current ata=0, ob-
served for finite concentrations of trapssr.0d, reflects the
fact that the model is no longer valid in the absence of a
field, when there is no stationary solution(since ions that are
stopped by a trap are not then reaccelerated). In the case of
unequal ion densities in the two reservoirs, the current-
voltage curves are asymmetric, as shown in Fig. 2(b). The
saturation value ofu j u is now larger for negativea, and j is
negative for small positive values ofa.

Thus far, we have assumed that any ion that encounters a
trap is stopped, regardless of its velocity. However, ions with
low kinetic energy could be expected to be more likely to be
bound by a polar residue lining a nanopore, than those with
more energy. We now consider a variation on our previous
model, in which a single trap is present at positionx=x0
inside the pores−L /2,x0,L /2d, which presents an “energy
barrier” of heightE0=mv0

2/2 to all ions crossingx=x0. We
shall consider two possible modes of action of this trap.

In model A, the trap atx=x0 stops all ions with kinetic
energy below the barrier height:mv2/2,E0 (and subse-
quently releases them to be reaccelerated by the electric
field), but has no effect on ions with energymv2/2.E0. The
appropriate kinetic equation reads as follows:

Sv
]

]x
+ a

]

]v
D fsx,vd = dsx − x0dFdsvdE

− v0

v0

dwuwufsx,wd

− usv0 − uvuduvufsx,vdG . s16d

Equation(16) can be solved analytically, but we shall instead
use simple arguments, as before, to obtain the currentj with-
out the explicit form offsx,vd. As above, any ion entering
the channel at the left extremitysx=−L /2d with velocity
v.0 will eventually reach the right extremitysx=L /2d, re-
gardless of whether it is stopped by the trap. The contribu-
tion j l of these ions to the current is therefore given by(10).
However, ions entering the channel atx=L /2 with velocity
v,0 will only reachx=−L /2 (and hence contribute to the
current) if they are not stopped either by the field or by the
energetic trap atx0. There are two possibilities, depending on
the barrier heightE0.

(i) E0.masx0+L /2d. In this case, any ion that reaches
the trap with energy greater thanE0, and so is not stopped,
must have sufficient energy to overcome the remaining part
of the opposing field betweenx0 and −L /2. In order to have

FIG. 2. Dimensionless currentj * = Î2pm/ skBTd j /r0 as a func-
tion of the dimensionless accelerationa* = maL/ skBTd, where the
reservoir densities arerl =Clr0 andrr =Crr0, for various values of
the dimensionless stopping trap densityrL. Solid lines:rL=0, dot-
ted lines:rL=1, dashed lines:rL=2. (a) Equal reservoir densities,
rr =rl; Cr =1, Cl =1. (b) rr =2rl; Cr =2, Cl =1. The insets show the
currentsj l and j r (in dimensionless form) due to ions originating in
the left (circles) and right(squares) reservoirs, for the caserL=1.
Values for the current in absolute units can be obtained by substi-
tuting absolute values for the physical parametersa, m, L, rr, rl, r,
andkBT.
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energyùE0 on reaching the trap atx0, an ion must enter the
channel atx=L /2 with velocity v such that

mv2

2
. E0 + maSL

2
− x0D s17d

so that, assuming an incoming Maxwell distribution, the dis-
tribution function of these ions is

f rsx,vd = rrus− vduFv2

2
− ax− Sv0

2

2
− ax0DG

3Î m

2pkBT
expH−

m

kBT
Fv2

2
+ aSL

2
− xDGJ .

s18d

Using s5d we find that in this case the contribution to the
current due to ions from the right hand reservoir is

j r = − rrÎ kBT

2pm
expH−

E0

kBT
−

ma

kBT
SL

2
− x0DJ . s19d

(ii ) E0,masx0+L /2d. In this case, ions which pass
through the barrier atx0 do not necessarily have sufficient
energy to overcome the remaining part of the field between
x0 and −L /2. The only ions that contribute to the current are
those entering the channel with velocityv, such that

mv2

2
. maL. s20d

These make a contribution to the distribution function,

f rsx,vd = rrus− vduFv2

2
+ aSL

2
− xD − aLG

3Î m

2pkBT
expH−

m

kBT
Fv2

2
+ aSL

2
− xDGJ ,

s21d

which results in a contribution to the current:

j r = − rrÎ kBT

2pm
expH−

maL

kBT
J . s22d

The total currentj = j l + j r for model A is, therefore,

j =Î kBT

2pm
Hrl − rruFE0 − maSx0 +

L

2
DG

3 expF−
E0

kBT
−

ma

kBT
SL

2
− x0DG − rruFmaSx0 +

L

2
D − E0G

3expF−
maL

kBT
GJ . s23d

Expression(23) is, of course, only valid for positive values
of a. The equivalent expression whena,0 can easily be
shown to be:

ja,0 =Î kBT

2pm
H− rr + rluFE0 + maSL

2
− x0DG

3 expF−
E0

kBT
+

ma

kBT
SL

2
+ x0DG

+ rluF− maSL

2
− x0D − E0GexpFmaL

kBT
GJ . s24d

The current-voltage curves for model A are shown in Fig.
3, in dimensionless form as in Fig. 2. For clarity, we consider
the case where only the right-hand reservoir contains ions:
rl =0. In Fig. 3(a), the position of the trap is fixed atx0=0
and the barrier heightE0/kBT is increased. WhenmaL/kBT
exceeds the critical value, given bymaL=E0/ s1/2+x0/Ld, j
no longer depends onE0 and all the curves become identical.
However, in the regime wheremaL,E0/ s1/2+x0/Ld, j de-
pends strongly onE0, being increased on increasing the bar-
rier height. This can be easily understood, since ions that
come from the right-hand reservoir and are impeded by the
barrier make a negative contribution to the current. An inter-
esting general observation can be made here, that the pres-
ence of an energetic barrier can have the effect of increasing
the ionic current. In Fig. 3(b), the barrier height is fixed
sE0/kBT=1d and the trap is moved toward the right-hand end
of the pore. The current-voltage characteristics are seen to be
rather sensitive to the position of the trap in the regime
maL,E0/ s1/2+x0/Ld, although there is no dependence for
larger maL/kBT. As x0 increases,j decreases, although the
value asa→0 remains unchanged.

FIG. 3. Dimensionless currentj * = Î2pm/ skBTd j /r0 for Model
A [Eqs.(23) and(24)] as a function ofa* = maL/ skBTd, (r0 defined
as in Fig. 2), for rr =r0; rl =0. (a) Energetic trap fixed at center of
pore,x0/L=0. Solid line:E0/ skBTd=0, dotted line:E0/ skBTd=0.5,
dashed line:E0/ skBTd=1. (b) Height of barrier fixed,E0/ skBTd=1.
Solid line: x0/L=0, dotted line:x0/L=0.2, dashed line:x0/L=0.4.

KINETIC MODELS OF ION TRANSPORT THROUGH A… PHYSICAL REVIEW E 70, 021105(2004)

021105-5



We also consider an alternative energetic barrier model,
model B. Here, ions encountering the trap with energy
greater than the barrier height,mv2/2.E0, do not continue
unperturbed, as in model A, but instead lose energyE0, being
released by the trap with reduced velocityv8, where uv8u
=Îv2−v0

2. Less energetic ions withmv2/2,E0 are stopped
by the trap, as in model A. Following a line of reasoning as
for model A, one finds that the total current(whena.0) is

j =Î kBT

2pm
Frl − rr expH−

m

kBT
SaL +

E0

m
DJG . s25d

Note that for model B, the currentj does not depend on the
positionx0 of the trap. Comparing expression(25) with (14)
and (15), we see that the current in model B with energy
barrierE0 is identical to that through the channel with stop-
ping traps investigated at the beginning of this section, if
E0/kBT=e−L/2

L/2 rsx8ddx8.

IV. FINITE CHANNEL WITH FRICTION

We now turn to a model where no stopping traps are
presentfrsxd=0g, but ions undergo frictional collisions in-
side the pore(of finite lengthL). This model might apply to
pores with few specific ion-pore interactions, such as carbon
nanotubes of finite length or aquaporins. The thermalizing
effect on the ion of these collisions with the channel surface
and with other molecules(e.g., water) is modeled by a
Langevin mechanism, represented by a Fokker—Planck op-
erator, so that the stationary state kinetic equation(1) now
becomes

Sv
]

]x
+ a

]

]v
D fsx,vd = g

]

]v
Sv +

kBT

m

]

]v
D fsx,vd. s26d

Equation(26) may be solved subject to boundary conditions
specifying the incoming particle fluxes from the leftsx=
−L /2d and from the rightsx=L /2d, i.e.,

E
0

`

vfS−
L

2
,vDdv = rlÎ kBT

2pm
, s27ad

E
−`

0

vfSL

2
,vDdv = − rrÎ kBT

2pm
. s27bd

In the limit of an infinitely long channelsL→`d, the dis-
tribution must be homogeneousffsx,vd→ fsvdg; the solution
of the corresponding Fokker-Planck equation[i.e., (26) with-
out thev] /]x operator in the free flow term] is

fsvd , expH−
m

2kBT
Sv −

a

g
D2J . s28d

On the other hand, a particular inhomogeneous solution of
Eq. (26) in a finite channel is

fsx,vd , expH−
m

kBT
Sv2

2
− axDJ . s29d

We now look for a solution of the FP equation(26) for finite
L, satisfying the boundary conditions(27), in the form of a

linear combination of the two solutions(28) and (29):

fsx,vd =Î m

2pkBT
FA expH−

m

kBT
Sv2

2
− axDJ

+ B expH−
m

2kBT
Sv −

a

g
D2JG . s30d

Distribution (30) indeed satisfies(26) for all values of the
coefficientsA andB. Imposing the boundary conditions(27),
we obtain

B =

rlexpHmaL

2kBT
J − rr expH−

maL

2kBT
J

X
s31d

where

X = 2 sinhS maL

2kBT
DexpH−

ma2

2kBTg2J
+

a

g
Î2pm

kBT FcoshS maL

2kBT
D + sinhS maL

2kBT
DE

− a
g

a
g fTsvddvG

s32d

and

A =
1

2 sinhS maL

2kBT
DFrr − rl +

a

g
Î2pm

kBT
BG . s33d

The current through the channel can then be calculated using
Eq. (5):

j =
a

g
B. s34d

Expression(34) for the current simplifies greatly in the limit
of vanishing applied fieldsa→0d, when the only driving
force is diffusion under the action of the density gradient
srl −rrd /L. Substituting(31) into (34), one finds

lim
a→0

j =Î kBT

2pm

rl − rr

s1 + gLfTs0dd
, s35d

i.e., the friction reduces the current by a factor 1/f1
+gLfTs0dg compared to the free-flow result(7). The a→0
limit of the distribution functionfsx,vda→0 and the resulting
density profile are discussed in Appendix B:fsx,vda→0 for a
givenL andg turns out not to be everywhere positive, point-
ing to a fundamental difficulty in applying the FP equation
(26) in a system of finite spatial extensionL. Another inter-
esting case is the limit of strong frictionsg→`d. B then
becomes
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lim
g→`

B =

rl − rr expH−
maL

kBT
J

1 − expH−
maL

kBT
J s36d

and the resulting current, given by inserting(36) in (34),
reduces to the classic expression of GHK, which arises from
solving the 1D diffusion equation in a constant external field
[6].

GHK theory predicts that the current increases linearly
with voltage across the channel for large voltages. However,
the behavior ofj for large a in this model is considerably
different: fixingg and taking the limita→` in Eq. (31), we
find that the current saturates for large applied fields.

lim
a→`

j = rlÎ kBT

2pm
, s37ad

lim
a→−`

j = − rrÎ kBT

2pm
. s37bd

Equations(37), which are identical to the saturation values
of the current for the models presented in Sec. III, corre-
spond to the situation where all ions crossing the channel in
the direction of the field contribute to the current andall ions
attempting to penetrate the channel against the field are
turned back.

An important experimental quantity is the “reversal
potential”—the voltage across the channel for which the total
ionic current is zero. In the case where the ionic species are
the same in the two reservoirs, the accelerationa0 at which
the current is zero is given by canceling the numerator of
(31), which yields

a0 =
kBT

mL
lnFrr

rl
G . s38d

Expression(38) is identical to the GHK prediction. However,
if the reservoirs contain different species, for example, po-
tassium on one side and sodium on the other, the model will
no longer agree with GHK theory.

Plots of the dimensionless currentj* versus the dimen-
sionless accelerationa* are shown in Fig. 4, for values of the
dimensionless frictiong* = LgÎm/ skBTd of 0.1, 1.0, and
10.0. In both Figs. 4(a) and 4(b), the insets show the results
of GHK theory. Figure 4(a) shows the current through the
channel when the ionic concentrations in the two reservoirs
are equal srr =rld. While GHK theory predicts linear
asymptotic behavior, the current given by Eq.(34) shows
saturation asuau→`. As the friction coefficient decreases,
the current-voltage relation becomes steeper and deviates
further from the GHK results. In Fig. 4(b), the current shown
in Fig. 4(a) is divided into the contributions of ions originat-
ing in the right(shown above) and left(shown below) reser-
voirs. As expected, for large positivea, the current is due
only to ions from the left, and for large negativea, it consists
only of ions from the right.

V. INFINITE CHANNEL WITH FRICTION AND TRAPS

We next address the full version of the model system
described in Sec. II: single ions moving under the influence
of a constant accelerating field, a FP thermalizing mechanism
and stopping traps. We shall consider only the case where the
velocity of an ion encountering a trap is set to zero, irrespec-
tive of its initial velocity, and where the average distribution
of the traps is uniformsrsxd=rd. An analytic solution of the
kinetic equation(1) is presented in the limit of an infinitely
long poresL→`d. This solution may prove useful in analyz-
ing ion flow through carbon nanotubes or the long pores
found in zeolites(specific pore-ion interactions in the zeolite
channels being represented by the stopping traps).

We first introduce dimensionless position and velocity
variablesy andu

x =
1

r
y, s39ad

v =ÎkBT

m
u, s39bd

as well as a dimensionless distribution functionFsy,ud
through the transformation

FIG. 4. Dimensionless currentj * = Î2pm/ skBTd j /r0 as a func-
tion of a* = maL/ skBTd, for values of dimensionless frictiong*
=LgÎm/ skBTd of 0.1 (solid lines), 1.0 (dotted lines), and 10.0
(dashed lines). (a) Equal reservoir densitiesrr =rl =r0; inset shows
results predicted by GHK theory.(b) Reservoir densitiesrr =r0;
rl =0 (above) and rr =0; rl =r0 (below); again, inset shows results
of GHK theory.
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fsx,vddxdv = fS1

r
y,ÎkBT

m
uD1

r
ÎkBT

m
dydu; Fsy,uddydu.

s40d

Using (39) and (40), the kinetic equation(1) becomes

Sbu
]

]y
+ a

]

]u
DFsy,ud

= bHdsudE
−`

+`

dwuwuFsy,wd − uuuFsy,udJ
+

]

]u
Su +

]

]u
DFsy,ud s41d

where the dimensionless coefficientsa andb are defined by

a =
a

g
Î m

kBT
, s42ad

b =
r

g
ÎkBT

m
. s42bd

We were unable to solve the inhomogeneous equation(41)
analytically. An analytic solution may, however, be obtained
in the limit of an infinitely long poresL→`d, when the ion
distribution no longer depends ony and the problem is spa-
tially homogeneous. Equation(41) then simplifies to

a
dFsud

du
= bHdsudE

−`

+`

dwuwuFswd − uFsudJ
+

d

du
Su +

d

du
DFsud. s43d

The solution of Eq.(43) is obtained as sketched in Appendix
C. The result is

Fsud = A expF−
su − ad2

4
GhusudDbsb+adsa + 2bdDbsb−ad

3su − a + 2bd + us− udDbsb−ads− a + 2bdDbsb+ad

3s− u + a + 2bdj, s44d

where theDpszd are parabolic cylinder functions. The con-
stant A determines the number density of ions inside the
channel(in a finite channel this would be set by the reservoir
densities); here, we assume one ion per unit channel length,
so thatA can be obtained numerically from the normalization
conditione−`

+`Fsuddu=1.
In the limit b→0, i.e., in the absence of traps,(44) re-

duces to the result(28) {noting thatD0szd=expf−z2/4g and
reverting to dimensional units}, and the current is linear ina.
In the limit a→0, i.e., in the absence of acceleration, the
solution(44) is seen to be an even function ofu, so that the
current j vanishes, as expected for an infinitely long, spa-
tially homogeneous channel.

In the general case, when botha and bÞ0, the current
must be calculated by numerical integration, after substitut-
ing (44) in (5). Figure 5 shows the currentJ=e−`

` uFsuddu
=Îm/ skBTd j , as a function ofa for b between 0 and 0.75.

The inset shows the forward and backward components ofJ
when b=0.5 [given by integrating over the coefficients of
usud andus−ud in Eq. (44)]. There is a qualitative difference
in the behavior of the current whenb=0, where the relation
betweenJ anda is linear, as noted above, and whenbÞ0,
where it is nonlinear. Thus even a very small density of
stopping traps(for example, due to defects or impurities) can
have a dramatic effect on the current flowing through the
pore. On estimating typical values of the physical parameters
a, g, m, andr, we find thata andb are in fact likely to be
small, perhaps of order 0.01–0.1.

VI. FINITE CHANNEL WITH THERMALIZING
CENTERS AND TRAPS

In Secs. IV and V, the effect of friction and thermalization
on the motion of single ions was modeled by the FP collision
operator. For the channel of finite length, this leads to the
fundamental problem that imposing the incoming ion fluxes
from the reservoirs at both ends of the channel results in a
stationary distribution functionfsx,vd, which is not positive
definite (see Appendix B). In this section, we therefore re-
place the FP mechanism by an alternative thermalization pro-
cess. We consider a model in which the 1D channel contains
N “thermalizing centers,” at positionsxi, such that

−
L

2
, x1 , x2 , . . . , xN ,

L

2
. s45d

When an ion reaches a thermalizing center, its incoming ve-
locity v is replaced by a new velocityv8 drawn from a Max-
well distributionfTsv8d, Eq. (3). The channel also contains a
series of “energy barriers,” of the type denoted “Model A” in
Sec. III: a barrier of heightEi temporarily stops an ion with
kinetic energymv2/2,Ei but has no effect ifmv2/2.Ei. An
energy barrier of heightEi is located between each pair of
neighboring thermalizing centers atxi−1 andxi; if Ei =0, this
is equivalent to having no energy barrier present. In between
encounters with thermalizing centers and energy barriers,
ions move with constant accelerationa, which is taken to act
toward the right. These models might be appropriate to cases

FIG. 5. CurrentJ=Îm/ skBTd j as a function ofa, for values ofb
of 0.0 (solid line), 0.25 (dotted line), 0.5 (dashed line), and 0.75
(dot-dashed line). Inset: TotalJ (dashed line) as well as components
of J toward the right(circles) and toward the left(squares), for the
case whereb=0.5.
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where both thermalization and pore-ion interactions are sig-
nificant, and where the channel structure is known, such as
biological ion channels.

We now analyze the stochastic process defined by this
model, leading to an exact calculation of the stationary cur-
rent j . The key quantity is the probabilitypsi → i +1d that an
ion that is thermalized by the center atxi, subsequently en-
counters the next thermalizing center atxi+1 (i.e., it reaches
xi+1 before xi−1). We first note that an ion that leaves the
center atxi, moving toward the left, requires minimal energy
esi , i −1d to penetrate the field and energetic barrier and reach
the center atxi−1, where

esi,i − 1d = masxi − xi−1d + Ei . s46d

We shall adopt the convenient notationx0=−L /2 andxN+1
=L /2, so that Eq.(46) remains valid fori =1 and for i =N
+1. Ions leavingxi toward the left with energy less than
esi , i −1d will be stopped(before reachingxi−1) and reaccel-
erated toward the right, returning toxi. Since ions leave the
thermalizing center with a Maxwell velocity distribution, the
probability wsi , i −1d, that an ion leavingxi (in either direc-
tion) has energy less thanesi , i −1d is given by

wsi,i − 1d =
2

Îp
E

0

Îesi,i−1d/kBT

duexps− u2d. s47d

An ion that leavesxi toward the right, on the other hand, will
certainly reach the thermalizing center atxi+1, regardless of
whether it is stopped by the energetic barrierEi+1. Thus on
leavingxi, an ion may be sent to the right(with probability
1/2), and reachxi+1, or it may be sent to the left, be stopped
and return toxi (with probability wsi , i −1d /2), or, lastly, it
may be sent to the left and reachxi−1.

The probabilitypsi → i +1d that an ion leavingxi reaches
xi+1 beforexi−1 can be found by summing over all the pos-
sible ways that this might happen. Thenth term in the series
corresponds to the scenario where an ion is sentn times to
the left (i.e., towardxi−1) and returns toxi before eventually
being sent to the right(i.e., towardxi+1). We thus obtain a
geometric series

psi → i + 1d =
1

2
+

1

2
Fwsi,i − 1d

2
G +

1

2
Fwsi,i − 1d

2
G2

+ ¯

=
1

2 − wsi,i − 1d
. s48d

The probability for the transition in the opposite direction
sxi to xi−1d is then clearly

psi → i − 1d = 1 − psi → i + 1d =
1 − wsi,i − 1d
2 − wsi,i − 1d

. s49d

The probabilities(48) and (49) may now be used to deter-
mine the probabilityqi that an ion starting fromxi eventually
leaves the channel through the right end atxN+1=L /2. Theqi
satisfy the(detailed balance) equations

qi = psi → i − 1dqi−1 + psi → i + 1dqi+1 s50d

with the boundary conditions

q0 = 0, qN+1 = 1. s51d

Defining the differencesDi =qi −qi−1, one finds from(50) that

Di+1

Di
=

1

psi → i + 1d
− 1 =

psi → i − 1d
psi → i + 1d

. s52d

Taking the product of both sides of Eq.(52) over 1ø i øn
leads to

p
i=1

n
Di+1

Di
=

qn+1 − qn

q1
= p

i=1

n
psi → i − 1d
psi → i + 1d

. s53d

Summing both sides of the second equality in Eq.(53) over
1ønøN, we arrive at

1 − q1

q1
= o

n=1

N

p
i=1

n
psi → i − 1d
psi → i + 1d

. s54d

The only ions that make a contribution to the current are
those that come from the left reservoir, pass through the
whole channel, and exit at the right end, and those that come
from the right reservoir and exit at the left end. We now
calculate the probabilityps−L /2→L /2d that an ion entering
the channel from the left reservoir will exit through the right
end, and thus contribute to the current. On entering the pore
at −L /2, the ion will reach the thermalizing center atx1 with
probability 1, so that the definition ofq1, together with Eqs.
(54), (48), and(49), leads to

ps− L/2 → L/2d = q1 =H1 + o
n=1

N

p
i=1

n
psi → i − 1d
psi → i + 1dJ−1

=H1 + o
n=1

N

p
i=1

n

f1 − wsi,i − 1dgJ−1

.

s55d

Consider next an ion entering the channel from the right. It
will reach the thermalizing center atxN with probability
expf−esN+1,Nd /kBTg. Therefore,

psL/2 → − L/2d = s1 − qNdexpf− esN + 1,Nd/kBTg. s56d

We find qN by settingn=N in Eq. (53) and using Eqs.(49)
and (56)

1 − qN = q1p
i=1

N
psi → i − 1d
psi → i + 1d

= ps− L/2 → L/2dp
i=1

N

f1 − wsi,i − 1dg. s57d

We now combine Eqs.(55)–(57) and conclude that ions com-
ing from the right reservoir contribute to the current with
probability
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psL/2 → − L/2d =
pi=1

N
f1 − wsi,i − 1dgexpH− esN + 1,Nd

kBT
J

1 + on=1

N pi=1

n
f1 − wsi,i − 1dg

.

s58d

The stationary current is given by the sum of the incoming
fluxes from the left and right reservoirs(found by assuming
incoming Maxwell distributions), multiplied by the prob-
abilities ps−L /2→L /2d and psL /2→−L /2d, which deter-
mine the extent to which the incoming flux is reduced by the
action of the thermalizing centers

j = j l + j r =Î kBT

2pm
frlps− L/2 → L/2d − rrpsL/2 → − L/2dg.

s59d

Inserting Eqs.(56) and (58) into (59), we find

j =Î kBT

2pm

3F rl − rrpi=1

N
f1 − wsi,i − 1dgexpf− esN + 1,Nd/kBTg

1 + on=1

N pi=1

n
f1 − wsi,i − 1dg G .

s60d

Combined with formulas(46) and(47), Eq. (60) provides an
explicit expression forj as a function of parameters defining
the internal structure of the channel. In the absence of ap-
plied field sa=0d and energy barriers(all Ei =0, wsi , i −1d
=0) the current(60), now due to the effect of the thermaliz-
ing centers only, takes the particularly simple form

j =Î kBT

2pm
Frl − rr

N + 1
G , s61d

i.e., both incoming fluxes are reduced by the same factor
1/sN+1d. The prediction(35) of the FP equation under the
same conditionssa=Ei =0d coincides with(61), provided

N

L
= gÎm/2pkBT. s62d

The “effective friction” introduced by the thermalizing cen-
ters is thus proportional to their density. Physically,(62) also
means that the relaxation timeg−1 is of the order of the time
taken by an ion to cover the average distanceL /N between
the thermalizing centers with velocityÎkBT/m. This equiva-
lence between the FP and thermalizing center results does
not hold, however, in the presence of an accelerating field
saÞ0d.

As in the case described by the FP collision term[cf., Eq.
(37)], the currentj saturates for large applied fieldssa→`d
at the valuej l. This is because all ions coming from the left
are driven through the channel by the strong field, while no
ions are able to cross the channel successfully from the right.

Formula (60) simplifies greatly when the thermalizing
centers are evenly distributed and in the absence of energy
barriers, i.e., whensxi −xi−1d=L / sN+1d and Ei =0 for all 1
ø i øN. In that case,

j =
1 − s

1 − sNÎ kBT

2pm
Frl − rrs

N expH−
maL

sN + 1dkBT
JG ,

s63d

where

s=
2

Îp
EÎ amL

sN+1dkBT

`

du exps− u2d. s64d

Figure 6 shows the effect on the dimensionless currentj*
of increasing the numberN of evenly spaced thermalizing
centers, when there are no energetic barriers(Ei =0 for all i).
In Fig. 6(a), the reservoir densities are equal,rl =rr =r0. As
N increases, the current decreases, requiring larger values of
the dimensionless accelerationa* to approach its asymptotic
value. The inset shows the contributions to the(dimension-
less) current from the left and right reservoirs whenN=5.
Figure 6(b) shows results for the same channel, when the
density of ions in the right-hand reservoir is twice as large as

FIG. 6. Dimensionless currentj * = Î2pm/ skBTd j /r0 as a func-
tion of a* = maL/ skBTd, where the reservoir densities arerl =Clr0

and rr =Crr0, for channels containing an increasing numberN of
evenly spaced thermalizing centers. Energetic barrier heightsEi are
all set to zero. Solid lines:N=0, dotted lines:N=1, dashed lines:
N=5, dot-dashed lines:N=10. (a) Equal reservoir densities,rr =rl;
Cr =1, Cl =1. (b) rr =2rl; Cr =2, Cl =1. The insets show the currents
j l and j r (in dimensionless form) due to ions originating in the left
(circles) and right(squares) reservoirs, whenN=5.
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that in the left,rr =2rl =2r0. In this case, the negative con-
tribution j r is increased and dominates for small values of
maL/ skBTd.

We have also investigated the effect of changing the spa-
tial arrangement of the thermalizing centers, once again in
the absence of energetic barriers(Ei =0 for all i). In Fig. 7(a),
the channel containsN=5 thermalizing centers which are all
located in the range −b/2øxøb/2, wherebøL. Within this
range the thermalizers are evenly spaced. Results are shown
for equal reservoir densities,rl =rr =r0. As b decreases and
the thermalizers become more localized in the middle of the
pore, the current increases, approaching its asymptotic value
for smaller values ofa*. However, the results forb=0.5L
(dotted lines) andb=0.25L (dashed lines) are rather similar,
indicating a limiting current-voltage relationship for smallb.

Interesting effects are obtained on including energetic bar-
riers. Figure 7(b) shows results for a channel containingN
=4 thermalizing centers, with a single barrierEi, located be-
tween the second and third thermalizerssi =3d, i.e., in the
central one of the five possible positions. Once again,rl
=rr =r0. As the barrier heightE3 is increased, the current
increases, showing that inserting an impedance to ion pas-
sage can actually enhance the total ion flow through the
channel. This apparently somewhat counter-intuitive result
can in fact be easily understood. Let us consider an ion that
is released by the thermalizing center atxi. If it is sent out

toward the right, the ion will certainly reachxi+1, while if it
is sent to the left, it will be stopped and return toxi with
probability wsi , i −1d, which is an increasing function ofEi.
Thus increasingEi increases the chances of an ion eventually
arriving atxi+1, and thus enhances the current. This phenon-
enon may be of interest for biological ion channels, where
the selectivity filter might play the role of an energetic bar-
rier.

VII. CONCLUSION

In this paper, we have introduced some simple 1D kinetic
models for the transport of independent ions through narrow
pores, under the influence of a constant acceleration, due to
an applied external electric field. The models include traps or
energy barriers, which represent the temporary binding of an
ion to polar residues lining the pore surface. They also ac-
count for the friction and thermalization due to collisions of
the ions with molecules(e.g., water) inside the pore as well
as with its inner, confining surface. The effect of reservoirs at
the pore ends is included in the model via boundary condi-
tions, which determine the flux of ions entering the pore.
Analytic results have been obtained for the stationary ion
current j and, in some cases, also for the stationary nonequi-
librium distribution functionfsx,vd.

Initially, the effect of friction and thermalization was in-
cluded in the model via a FP operator in the kinetic equation.
We were unable to find a solution for a pore of finite length
L when both traps and the FP description of friction are
present. However, we have derived an explicit solution for
the homogeneous case of an infinitely long pore. For pores of
finite length, solutions are given for models with stopping
traps or energy barriers in the absence of friction. For stop-
ping traps, the current does not depend on the spatial distri-
bution of the traps, but for a single energy barrier, there may
be a dependence on its position, depending on its mechanism
of action. We have also solved the kinetic equation for the
distribution functionfsx,vd, for a finite channel in the case
where the FP mechanism is present, but there are no traps or
energy barriers. In this case, on imposing the incoming
fluxes from the reservoirs at both ends of the pore,fsx,vd
turns out not to be positive definite for short channels and/or
small values of the friction constantg. This nonphysical be-
havior can be understood in terms of competing time scales
for high velocity ions(which pass through the channel before
they can be thermalized); the resulting ion current remains
well behaved, as does the number density profile. In view of
this deficiency of the FP mechanism in a pore of finite
length, we have introduced an alternative model, whereby
ions are instead thermalized by encounters with a series of
thermalizing centers, located at given positions inside the
pore. Energy barriers may also be present.

An important conclusion arising from all the models that
were considered is that the currentj invariably saturates as a
function of the external field(or equivalently the constant
accelerationa), since it is limited by the incoming flux from
the reservoirs. This saturation behavior contrasts with the
linear increase ofj with voltage predicted by the classic
GHK result, which can be derived by solving the 1D diffu-

FIG. 7. Dimensionless currentj * = Î2pm/ skBTd j /r0 as a func-
tion of a* = maL/ skBTd, for equal reservoir densitiesrl =rr =r0. (a)
Channel containsN=5 thermalizing centers, evenly spaced in the
range −b/2øxøb/2. All barrier heightsEi are set to zero. Solid
line: b=L, dotted line:b=L /2, dashed line:b=L /4. (b) Channel
contains N=4 thermalizing centers, evenly spaced in the range
−L /2øxøL /2, and one energetic barrierE3ù0, located between
the central pair of thermalizing centers. Solid line:E3/ skBTd=0,
dotted line:E3/ skBTd=1, dashed line:E3/ skBTd=2.
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sion equation in the presence of a constant external field. A
further interesting observation that emerges from this work is
that the presence of stopping traps or energy barriers inside
the pore can increase rather than decrease the ionic current.
This is because the steady-state flow of ions crossing the
pore in the direction of the applied acceleration is unaffected
by the traps or barriers, while the flow of ions against the
field is reduced. When the former contribution is the domi-
nant one, the current will be enhanced by the traps or barri-
ers.

A question that arises is whether there is any correspon-
dance between the two models of friction and thermalization
considered in this work: the FP mechansim and the model
involving N thermalizing centers. In the absence of an ap-
plied field and of energy barriers, when ionic motion is
driven only by the concentration gradient across the pore, an
equivalence can be established between the two models[c.f.,
Eq. (62)]. However, under more general conditions, we have
found no one-to-one correspondance between the two de-
scriptions of dissipation.

Our models are very much simplified in comparison with
real nanopores, such as ion channels, aquaporins, zeolites, or
carbon nanotubes. More detailed models would explicitly in-
clude the 3D character of the reservoir. Interactions between
ions are neglected in our model, and these may play an im-
portant part in the mechanism of ion transport through some
channels. For ion channels, the electric field is also unlikely
to be constant within the channel. We believe, however, that
the analytical results presented here provide some interesting
insights, as well as being a useful starting point for the de-
velopment of more realistic models.

Future work will include a complete numerical analysis of
the model involving both energy barriers and thermalizing
centers. We also plan to extend the kinetic models to include
the possibility of collective ion permeation through a pore,
by including ion-ion interactions. These are believed to play
an important role in ion transport through some biological
channels[8,9,11,12]. Appropriate selection of parameters,
such as the pore lengthL, the friction coefficientg, or the
number and positions of the thermalizing centers and the
positions and heights of the energy barriers, to correspond to
the structure of real ion channels, should allow the predic-
tions of these kinetic models to be compared to measured
current-voltage characteristics.

ACKNOWLEDGMENTS

The authors thank Bob Eisenberg for his advice. J.P.
thanks EPSRC for financial support. R.J.A. acknowledges
the support of EPSRC and Unilever.

APPENDIX A

Here we derive an analytic solution for the kinetic equa-
tion (9), for the case wherersxd=r; i.e., we find the distri-
bution functionfsx,vd for ions experiencing a uniform exter-
nal electric field and traps distributed according to a Poisson
law corresponding to a uniform average densityr.

The distribution functionfsx,vd is split into the contribu-
tions f+sx,vd and f−sx,vd of ions moving to the right and to
the left:

fsx,vd = usvdf+sx,vd + us− vdf−sx,vd. sA1d

Substituting(A1) into (9) (with rsxd=r), we obtain

Sv
]

]x
+ a

]

]v
+ rvD f+sx,vd = 0, sA2ad

Sv
]

]x
+ a

]

]v
− rvD f−sx,vd = 0. sA2bd

Equations(A2) imply that

f+sx,vd = expf− rxgF+sv2/2 − axd, sA3ad

f−sx,vd = expfrxgF−sv2/2 − axd. sA3bd

The as yet unknown functionsF+ and F− are linked by the
requirement(6) that the currentj be independent ofx,

j =E dvvfsx,vd = constant. sA4d

Substituting(A3) into (A4), and definingw=v2/2−ax, we
obtain

j = constant = expf− rxgE
−ax

`

F+swddw

− expfrxgE
−ax

`

F−swddw. sA5d

Multiplying (A5) by expfrxg and differentiating with respect
to x, we obtain

aF+s− axd = jr expfrxg + F2rE
−ax

`

F−swddw

+ aF−s− axdGexpf2rxg. sA6d

Equation(A6) is valid inside the channel, i.e., for values ofx
in the range −L /2øxøL /2. The argument −ax of F+ and
F−, therefore, ranges between −aL/2 andaL/2, so that the
relationship (A6) between F+swd and F−swd holds for
−La/2øwøLa/2. Sincew=v2/2−ax, this corresponds to
v2/2øasL /2+xd.

The distribution of particles moving against the field
f−sx,vd can be obtained using simple arguments. If a particle
reaches positionx with negative velocityv, then it must have
had energymu2/2=mv2/2+masL /2−xd at the right-hand
channel entrance and have encountered no traps over the
distancesL /2−xd, since on encountering a trap an ion is
reaccelerated by the field toward the right. Assuming a Max-
well distribution for the velocities of the incoming ions and
noting that the Poisson probability for encountering no traps
over this distance is expf−rsL /2−xdg, we find that
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f −sx,vd = expfrxgrrÎ m

2pkBT

3 expF−
m

kBT
sv2/2 − axdG

3expF−
L

2
Sr +

ma

kBT
DG sA7d

and thus from(A3)

F −swd = rrÎ m

2pkBT
expF−

mw

kBT
GexpF−

L

2
Sr +

ma

kBT
DG .

sA8d

Substituting the result(A8) into (A6), we find that forv2/2
øasL /2+xd:

f+sx,vd = j
r

a
expF−

r

2a
v2G +

rr

a
F m

kBT
+

2r

a
GÎ kBT

2pm

3 expF−
m

kBT
Sv2

2
− axDGexpFrx −

r

a
v2G

3 expF−
L

2
Sr +

ma

kBT
DG . sA9d

Using a similar argument to that above, we can determine the
remaining part off+sx,vd, for v2/2ùasL /2+xd. Ions with
v2/2ùasL /2+xd moving toward the right cannot have been
stopped by a trap, since their energy is larger than that due to
the accelerating field over the distance traveled in the pore.
These ions must have entered the pore atx=−L /2 with en-
ergy mu2/2=mv2/2−masL /2+xd and have encountered no
traps over a distanceL /2+x. Assuming a Maxwell distribu-
tion of incoming particles, we obtain a contribution to
f+sx,vd of

usv2/2 − asL/2 + xddexpf− rsL/2 + xdg

3 rlÎ m

2pkBT
expF−

m

kBT
sv2/2 − asL/2 + xddG .

sA10d

Noting that atx=−L /2, v2/2ùasL /2+xd, we can use Eqs.
(A7) and (A10) for x=−L /2 to calculate the current:

j =Î kBT

2pm
Hrl − rr expF− LSr +

ma

kBT
DGJ . sA11d

Substituting this result in(A9), the final result for the distri-
bution functionfsx,vd is

fsx,vd = us− vdrrf
TsvdexpFS ma

kBT
+ rDsx − L/2dG + usvd

3hu fv2/2 − asL/2 + xdgY + u fasL/2 + xd − v2/2gZj,

sA12d

where

Y = rlf
TsvdexpFS ma

kBT
− rDsx + L/2dG , sA13ad

Z =Î kBT

2pm
Hrl − rr expF− LSr +

ma

kBT
DGJ

3
r

a
expF−

r

2a
v2G + S2rkBT

am
+ 1DexpF−

r

a
v2G

3 rrf
TsvdexpFS ma

kBT
+ rDsx − L/2dG , sA13bd

and fTsvd is the Maxwell distribution function, Eq.(3).
Equations(A11) and(A12) were derived for an accelerating
field toward the rightsa.0d. For a,0, the corresponding
result for the current is

j =Î kBT

2pm
Hrl expF− LSr −

ma

kBT
DG − rrJ . sA14d

APPENDIX B

In Sec. IV, we constructed the solution of the FP equation
(26), satisfying the boundary conditions given in Eq.(27).
The solution consists of a linear combination of a nonequi-
librium stationary homogeneous solution(28), which gives
rise to a constant current, and an inhomogeneous equilibrium
state(29), which does not contribute to the current. We thus
found the stationary state(30), which is of the form

fsx,vd = A expFmax

kBT
GfTsvd + BfTSv −

a

g
D sB1d

wherefT denotes the Maxwell distribution(3). The corre-
sponding currentj and densitynsxd of the ions are given by

j =
a

g
B, sB2ad

nsxd = A expFmax

kBT
G + B. sB2bd

The imposed incoming ionic fluxes from the thermostats de-
termine uniquely the values ofA andB [Eqs.(31) and(33)].

When the ion density in the right thermostat is related to
that in the left thermostat by the Boltzmann factor

rr = rl expFmaL

kBT
G , sB3d

the coefficientB vanishes and the distribution(B1) reduces
to the well known equilibrium solution of the FP equation
(29). When relation(B3) does not hold, however, equilib-
rium cannot occur, and a stationary current will flow through
the channel. It can be proved that in this situation the ionic
number densitynsxd is positive, but a difficulty arises when
one considers the velocity distribution in the region of large
velocities. In order to illustrate the problem, let us study the
simple limiting case of vanishing acceleration. From Eqs.
(31) and (33) in the limit of a→0 we get the asymptotic
relations

A + B =
rl + rr

2
sB4d
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f1 + gLfTs0dgB = gLfTs0d
rl + rr

2
+

g

2pafTs0d
srl − rrd.

sB5d

The stationary distribution(B1) takes the form

lim
a→0

fsx,vd =
rl + rr

2
fTsvd +

g

2pafTs0d
srl − rrd

1 + gLfTs0d

3 SfTsv − a/gd − expFmax

kBT
GfTsvdD . sB6d

The evaluation of the point limit(at fixed values of the vari-
ablev) leads eventually to the distribution

fa=0sx,vd = Frl + rr

2
+

srl − rrdfTs0d
1 + gLfTs0d

sv − gxdGfTsvd.

sB7d

The distribution(B7) is an inhomogeneous solution of the
the FP equation

v
]

]x
fsx,vd = g

]

]v
Sv +

kBT

m

]

]v
D fsx,vd sB8d

satisfying to the boundary conditions(27). The current and
the density profile, which is linear, are given by

j =
j l − j r

1 + gLfTs0d
, sB9ad

nsxd =
rl + rr

2
+

srl − rrdfTs0d
1 + gLfTs0d

gx. sB9bd

Whereasnsxd is positive everywhere within the channel, the
complete distributionfa=0sx,vd is not positive definite. For
example, whenrl ,rr, fa=0sx,vd turns negative for suffi-
ciently large velocities and thus loses its physical meaning.
Hence it seems that a physically acceptable inhomogeneous
stationary state cannot be obtained from the FP equation.

Notice that one can define a characteristic velocitygL,
associated with the finite length channel; ions with velocities
larger than this will cover the length of the channel in a time
interval that is shorter than the FP thermalization timeg−1. It
turns out that whenv,gL, the distribution function
fa=0sx,vd.0, and so the difficulty appears only for velocities
larger thangL. Clearly, when the friction coefficientg is
large enough the nonphysical region is quantitatively irrel-
evant because of the negligibly small probability weight
coming from the Maxwell distribution. From a fundamental
point of view, however, the solution(B7) demonstrates that
the FP equation is incompatible with the boundary conditions
(27) for a channel of finite length.

APPENDIX C

In this section, we describe the solution of the kinetic
equation(43), for ions flowing through a channel under the
influence of a uniform accelerating field, a FP friction
mechanism and stopping traps distributed on average uni-

formly, in the limit where the channel is infinitely long and
the problem is spatially homogeneous.

The first term on the right-hand side of Eq.(43) describes
the effect of the stopping traps(in terms of a balance be-
tween loss of particles of dimensionless velocityu and gain
of those withu=0). This term may be recast in the form

bHdsudE
−`

+`

dwuwuFsy,wd − uuuFsy,udJ
=

b

2

d

duHsgnsudE
−`

+`

dwuu − wuFswd

− uuuE
−`

+`

dwsgnsu − wdFswdJ , sC1d

where sgnsud=usud−us−ud.
Substituting(C1) into (43), and integrating overu, one

obtains the following relation:

Su − a +
d

du
DFsud =

1

2
bsgnsudE

−`

+`

dwwsgnsu − wdFswd + C.

sC2d

The integration constantC on the right-hand side of this
relation is determined by the boundary condition
limu→±`Fsud=0, which shows that

C = −
b

2
E

−`

+`

dwwFswd = −
b

2
j sC3d

where j is the dimensionless current. Gathering results, Eq.
(C2) may be cast in the form

Su − a +
d

du
DFsud = − bHusudE

u

+`

dwwFswd

+ us− udE
−`

u

dwwFswdJ . sC4d

The structure of the integro-differential equation(C4)
suggests seeking a solution of the form

Fsud = usudF+sud + us− udF−sud sC5d

whereF+ andF− satisfy the equations

Su − a +
d

du
DF+sud = − bE

u

`

dwwF+swd, sC6ad

Su − a +
d

du
DF−sud = − bE

−`

u

dwwF−swd sC6bd

to be solved, subject to the boundary condition

F+s0d − F−s0d = 0. sC7d

Differentiation of (C6a) leads to

d2

du2F+sud + su − ad
dF+sud

du
+ s1 − budF+sud = 0. sC8d

Seeking a solution of the form
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F+sud = expf− su − ad2/4gG+sud sC9d

and substituting in(C8), one arrives at the following differ-
ential equation forG+sud:

d2G+sud
du2 + F1

2
+ bsb − ad −

su − a + 2bd2

4
GG+sud = 0,

sC10d

the solution of which is

G+sud = Dbsb−adsu − a + 2bd, sC11d

whereDpszd is a parabolic cylinder function. Hence,

F+sud = expf− su − ad2/4gDbsb−adsu − a + 2bd. sC12d

Proceeding along similar lines, one finds the solution of
(C6b) in the form

F−sud = expf− su − ad2/4gDbsb+ads− u + a + 2bd

sC13d

and hence,

Fsud = expf− su − ad2/4g 3 hA1us− udDbsb+ads− u + a + 2bd

+ A2usudDbsb−adsu − a + 2bdj . sC14d

A relation between the coefficientsA1 and A2 follows from
the boundary condition(C7), namely,

A1Dbsb+adsa + 2bd = A2Dbsb−ads− a + 2bd, sC15d

from which the general solution(44) in the main text fol-
lows.
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